- DI Table Chart No 105
- DI Table Chart No 104
- DI Table Chart No 103
- DI Table Chart No 102
- DI Table Chart No 101
- DI Table Chart No 100
- DI Table Chart No 99
- DI Table Chart No 96
- DI Table Chart No 95
- DI Table Chart No 94
- DI Table Chart No 87
- DI Table Chart No 85
- DI Table Chart No 84
- DI Table Chart No 83
- DI Table Chart No 82
- DI Table Chart No 81
- DI Table Chart No 80
- DI Table Chart No 79
- DI Table Chart No 78
- DI Table Chart No 77
- DI Table Chart No 76
- DI Table Chart No 74
- DI Table Chart No 73
- DI Table Chart No 72
- DI Table Chart No 71
- DI Table Chart No 70
- DI Table Chart No 69
- DI Table Chart No 63
- DI Table Chart No 62
- DI Table Chart No 61
- DI Table Chart No 59
- DI Table Chart No 57
- DI Table Chart No 56
- DI Table Chart No 52
- DI Table Chart No 51
- DI Table Chart No 50
- DI Table Chart No 45
- DI Table Chart No 39
- DI Table Chart No 38
- DI Table Chart No 37
- DI Table Chart No 34
- DI Table Chart No 33
- DI Table Chart No 32
- DI Table Chart No 31
- DI Table Chart No 30
- DI Table Chart No 29
- DI Table Chart No 28
- DI Table Chart No 27
- DI Table Chart No 23
- DI Table Chart No 11
- DI Table Chart No 10
- DI Table Chart No 9
- DI Table Chart No 5

Person |
No. of days they worked |
Percentage of work done to complete the project |

A | 8 | 20% |

B | 3 | 10% |

C | 6 | 25% |

D | 15 | 30% |

E | 6 | 15% |

Important for :

1

B

A does 20% work in 8 days.So, 100% work in 100 × | 8 | = 40 days |

20 |

B does 10% work in 3 days

So, 100% work in 100 × | 3 | = 30 days |

10 |

1 day work of A and B together is:-

So, | 1 | + | 1 | = | 7 |

40 | 30 | 120 |

So in 10 days they completed 7/12 part of the work

Now, C completed 25% = | 1 | of work |

4 |

So now remaining work = 1 – | ( | 7 | + | 1 | ) | = | 1 |

12 | 4 | 6 |

F complete | 1 | work in 16 days, |

6 |

so complete work in 96 days.

Hence, option (B) is correct.

2

D

A’s part of work = 20% = | 1 |

5 |

So, G did | 1 | of work and whole work in 30 days, |

5 |

⇒ | 1 | work in | 1 | × 30 = 6 days |

5 | 5 |

Now, B also worked for 6 days.

B can complete 10% of work in 3 days

So, B can complete the whole work in 100 × | 3 | = 30 days |

10 |

So, in 6 days, B completed | 6 | = | 1 | of work |

30 | 5 |

Now, remaining work = 1 – | ( | 1 | + | 1 | ) | = | 3 |

5 | 5 | 5 |

Now, E can complete 15% of work in 6 days

So, E can complete the whole work in 100 × | 6 | = 40 days |

15 |

M can complete the work in | 1 | th of No. of days of E = | 1 | × 40 = 10 days. |

4 | 4 |

So, M completed | 3 | work in | 3 | × 10 = 6 days |

5 | 5 |

Hence, total number of days = 6 + 6 + 6 = 18

Therefore, option (D) is correct.

3

B

5 people equally divided the work so each did | 1 | work now |

5 |

A does | 1 | th work in 8 days |

5 |

B does | 1 | th (10%) work in 3 days ⇒ | 1 | th of work in 6 days |

10 | 5 |

C does | 1 | th (25%) work in 6 days ⇒ | 1 | th work in 4.8 days |

4 | 5 |

D does | 3 | th (30%) work in 15 days ⇒ | 1 | th work in 10 days |

10 | 5 |

E does | 3 | th (15%) work in 6 days ⇒ | 1 | th work in 8 days |

20 | 5 |

Hence, total work completed in = 8 + 4.8 + 6 + 10 + 8 = 36.8 days

Therefore, option (B) is correct.

4

C

B can complete 10% of work in 3 daysSo, B can complete the whole work in 100 × | 3 | = 30 days |

10 |

As P is 20% more efficient than B

⇒ P can complete the work in 25 days

C can complete 25% of work in 6 days

So, C can complete the whole work in 100 × | 6 | = 24 days |

25 |

As Q is 60% more efficient than B

⇒ Q can complete the work in 15 days

Now, P & Q worked for 5 days,

⇒ | 5 | + | 5 | = | 8 |

25 | 15 | 15 |

Remaining work = 1 – | 8 | = | 7 | |

15 | 15 |

D can complete 30% of work in 15 days

So, D can complete the whole work in 100 × | 15 | = 50 days |

30 |

So, D does | 7 | th of work in 50 × | 7 | = 23 | 1 | days |

15 | 15 | 3 |

Hence, option (C) is correct.

5

C

Let us assume he buys n goods.

Total CP = 20n

Total SP = 2 + 4 + 6 + 8 ….n terms

Total SP should be at least 40% more than total CP

2 + 4 + 6 + 8 ….n terms ≥ 1.4 × 20 n

2 (1 + 2 + 3 + ….n terms) ≥ 28n

Sum of n – terms = | {n (n + 1)} |

2 |

n (n + 1) ≥ 28n

n^{2} + n ≥ 28n

n^{2} – 27n ≥ 0

n ≥ 27

He should sell a minimum of 27 goods.

Hence, option (C) is correct.

Hence, option (C) is correct.