-' $^{-}$SmartKeeda The Question Bank
 Presents

 TestZone

 TestZone
 India's least priced Test Series platform

∇

12 Month Plan

2017-18 All Test Series

@ Just

₹ 399/-

300+ Full Length Tests

\checkmark Brilliant Test Analysis
\boxtimes Excellent Content
\checkmark Unmatched Explanations

Circles Questions for CDS, SSC \& Railway Exams

Circle Quiz 1

Directions: Kindly study the following questions carefully and choose the right answer:

1. The diameter of a circle with centre at C is 50 cm . CP is a radial segment of the circle. $A B$ is a chord perpendicular to $C P$ and passes through P. CP produced intersects the circle at D. If $D P=18 \mathrm{~cm}$, then what is the length of $A B$?
A. 24 cm
B. 32 cm
C. 40 cm
D. 48 cm
2. A circle of radius 10 cm has an equilateral triangle inscrisbed in it. the length of the perpendicular drawn from the centre to any side of the triangle is
A. $2.5 \sqrt{3} \mathrm{~cm}$
B. $5 \sqrt{3} \mathrm{~cm}$
C. $10 \sqrt{3} \mathrm{~cm}$
D. None of these
3. In a $\triangle A B C, A B=B C=C A$. The ratio of the radius of the circumcircle to that of the incircle is
A. $2: 1$
B. $3: 1$
C. $3: 2$
D. None of these
4. Consider the following statements
I. The tangent of a circle is a line that meets the circle in one and only one point.
II. The tangent of a circle at the end point of the diameter is perpendicular to the diameter.

Which of the above statements is/are correct?
A. Only I
B. Only II
C. Both I and II
D. Neither I nor II
5. A regular hexagon is inscrisbed in a circle of radius 5 cm . If x is the area inside the circle but outside the regular hexagon, then which one of the following is correct?
A. $13 \mathrm{~cm}^{2}<x<15 \mathrm{~cm}^{2}$
B. $15 \mathrm{~cm}^{2}<\mathrm{x}<17 \mathrm{~cm}^{2}$
C. $17 \mathrm{~cm}^{2}<\mathrm{x}<19 \mathrm{~cm}^{2}$
D. $19 \mathrm{~cm}^{2}<\mathrm{x}<21 \mathrm{~cm}^{2}$
6. $A B$ and $C D$ are two chords of a circle meeting externally at P. Then, which of the following is/are correct?
I. $\mathrm{PA} \times \mathrm{PD}=\mathrm{PC} \times \mathrm{PB}$
II. \triangle PAC and \triangle PDB are similar.

Select the correct answer using the codes given below.
A. Only I
B. Only II
C. Both I and II
D. Neither I nor II
7. Consider the following statements
I. The perpendicular bisector of a chord of a circle does not pass through the centre of the circle.
II. The angle in a semi-circle is a right angle.

Which of the statements given above is/are correct?
A. Only I
B. Only II
C. Both I and II
D. Neither I nor II
8. Consider a circle with centre at O and radius r. Points A and B lie on its circumference and a point M lies outside of it such that M, A and O lie on the same straight line. Then, the ratio of MA to MB is
A. equal to 1
B. equal to r
C. greater than 1
D. less than 1
9. Consider the following statements in respect of two chords XY and ZT of a circle intersecting at P.
I. $\mathrm{PX} \cdot \mathrm{PY}=\mathrm{PZ} \cdot \mathrm{PT}$
II. PXZ and PTY are similar triangles.

Which of the statements given above is/are correct?
A. Only I
B. Only II
C. Both I and II
D. Neither I nor II
10. $A B C$ is an equilateral triangle inscribed in a circle D is any point on the arc $B C$. What is $\angle A D B$ equal to?
A. 90°
B. 60°
C. 45°
D. None of the above

Correct Answers:

$\mathbf{1}$	$\mathbf{2}$	$\mathbf{3}$	$\mathbf{4}$	$\mathbf{5}$	$\mathbf{6}$	$\mathbf{7}$	$\mathbf{8}$	$\mathbf{9}$	$\mathbf{1 0}$
D	D	A	C	A	D	B	D	C	B

Explanations:

1.

In $\triangle \mathrm{ACP}$
$C P=C D-P D=25-18=7$
Now, $A C^{2}=C D^{2}+A P^{2}$

$\therefore \quad A P=A C^{2}-C D^{2}=\sqrt{(25)^{2}-(7)^{2}}$
$=\sqrt{625-49}=\sqrt{576}=24 \mathrm{~cm}$
Similarly, PB = 24 cm
$\therefore \quad A B=A P+P B$

$$
=24+24
$$

$$
=48 \mathrm{~cm} .
$$

Hence, option D is correct.
2.

Circumradius $=\frac{2}{3} \times$ Height
\therefore Height $=\frac{10 \times 3}{2}=15 \mathrm{~cm}$

So,
length of perpendicular drawn from center
$=15-10=5 \mathrm{~cm}$.
Hence, option D is correct.
3.

In $\triangle A B C$,
$A B=B C=A C$
Hence, $\triangle A B C$ is equilateral triangle.

Let r be the radius of incircle and R be the radius of circumcircle.
Now, radius of incircle, $\mathrm{r}=\frac{\text { Side }}{2 \sqrt{3}}=\frac{A B}{2 \sqrt{3}}$
and radius of circumcircle, $\mathrm{R}=\frac{\text { Side }}{\sqrt{3}}=\frac{A B}{\sqrt{3}}$
So, the required ratio $=\frac{R}{r}=\frac{A B / \sqrt{3}}{A B / 2 \sqrt{3}}=\frac{2}{1}$
$=2: 1$.
Hence, option A is correct.
4.

By definition of tangent,
A tangent to a circle is straight line that touches the circle at a single point. Also, tangent at the end points of a diameter of a circle is perpendicular to the diameter.

So, both statements are correct.

Hence, option C is correct.
5.
$\mathrm{OB}=\mathrm{OA}=$ radius
Also, $\angle \mathrm{AOB}=60^{\circ}\left(\frac{360^{\circ}}{6}=60^{\circ}\right)$
and $\angle \mathrm{OAB}=\angle \mathrm{OBA}=60^{\circ}$ So, $\triangle \mathrm{AOB}$ is an equilateral triangle. Then, $=5 \mathrm{~cm}$

So, Area, $x=$ Area of circle - Area of hexagon
$=\pi r^{2}-\frac{3 \sqrt{3}(a)^{2}}{2}$
$=\frac{22}{7} \times(5)^{2}-\frac{3 \sqrt{3}(5)^{2}}{2} \quad[\because r=a=5]$
$=78.57-64.95=13.62 \mathrm{~cm}^{2}$
Hence, option A is correct.
6.
$A B$ and $C D$ are chords when produced meet externally at P.
$\therefore \quad \mathrm{AP} \times \mathrm{BP}=\mathrm{CP} \times \mathrm{DP}$
Now, as $A C \nVdash B D$ and $\triangle P A C$ is not similar to $\triangle P D B$.
Hence, option D is correct.

7.

The perpendicular bisector of the chord of a circle always pass through the centre.
So, Statement I is wrong.
The angle in a semi-circle is a right angle.
So, Statement II is correct.
Hence, option B is correct.

8.

Since, secants $\angle A$ and $B N$ are intersecting at an exterior point M, then
$L M \times A M=B M \times N M$
$\Rightarrow \mathrm{MA}=\mathrm{MN}<1$

MBLM

Hence, option D is correct.
9.

When two chords of a circle are intersect internally, then they are divided in proportion.
i.e. $P X . P Y=P Z . P T$

In $\triangle P X Z$ and $\triangle P T Y$,
$\angle Z P X=\angle Y P T$
$\angle P Z X=\angle P Y T$
$\angle P X Z=\angle P T Y$
(Vertically opposite angles)
(angles in same segment)
(angles in same segment)
$\triangle \mathrm{PXZ} \triangle \mathrm{PTY}$

Hence, the both statements are correct.

Hence, option C is correct.
10.
$\angle A D B=\angle A C B=60^{\circ}$
[\because angles in the same segment are equal]
Hencee, option B is correct.

$\sim^{\prime}-$ SmartKeeda The Question Bank प्रस्तुत करते हैं

 TestZone

 TestZone भारत की सबसे किफायती टेस्ट सीरीज़

12 Month Plan

2017-18 All Test Series

@ Just

₹ 399/300 + फुल लेन्थ टेस्ट

『 श्रेष्ठ विश्लेषण
『 उत्कृष्ट विषय सामग्री
\square बेजोड़ व्याख्या

