-' $^{-}$SmartKeeda The Question Bank
 Presents

 TestZone

 TestZone
 India's least priced Test Series platform

∇

12 Month Plan

2017-18 All Test Series

@ Just

₹ 399/-

300+ Full Length Tests

\checkmark Brilliant Test Analysis
\boxtimes Excellent Content
\checkmark Unmatched Explanations

Circle Questions for CDS, SSC \& Railways Exams

Circle Quiz 2

Directions: Kindly study the following questions carefully and choose the right answer:

1. Two equal circles of radius 4 cm intersect each other such that each passes through the centre of the other. The length of the common chord is :
A. $2 \sqrt{3} \mathrm{~cm}$
B. $4 \sqrt{3} \mathrm{~cm}$
C. $2 \sqrt{2} \mathrm{~cm}$
D. 8 cm
2. The largest chord of a circle is known to be 10.1 cm . The radius of this circle must be :
A. 5 cm
B. greater than 5 cm
C. greater than or equal to 5 cm
D. less than 5 cm
3. The length of the chord of a circle is 8 cm and perpendicular distance between centre and the chord is 3 cm . Then the radius of the circle is equal to :
A. 4 cm
B. 5 cm
C. 6 cm
D. 8 cm
4. The length of a chord of a circle is equal to the radius of the circle. The angle which this chord subtends in the major segment of the circle is equal to
A. 30°
B. 45°
C. 60°
D. 90°
5. $\mathrm{AB}=8 \mathrm{~cm}$ and $\mathrm{CD}=6 \mathrm{~cm}$ are two parallel chords on the same side of the centre of a circle. The distance between them is 1 cm . The radius of the circle is
A. 5 cm
B. 4 cm
C. 3 cm
D. 2 cm
6. The length of two chords $A B$ and $A C$ of a circle are 8 cm and 6 cm and $\angle B A C=$ 90°, then the radius of circle is
A. 25 cm
B. 20 cm
C. 4 cm
D. 5 cm
7. The distance betwen two parallel chords of length 8 cm each in a circle of diameter 10 cm is
A. 6 cm
B. 7 cm
C. 8 cm
D. 5.5 cm
8. The length of the common chord of two intersecting circles is 24 cm . If the diameter of the circles are 30 cm and 26 cm , then the distance between the centre (in cm) is
A. 13
B. 14
C. 15
D. 16
9. In a circle of radius 21 cm , an arc subtends an angle of 72° at the centre. The length of the arc is
A. 21.6 cm
B. 26.4 cm
C. 13.2 cm
D. 19.8 cm
10. A unique circle can always be drawn through x number of given non-collinear points, then x must be
A. 2
B. 3
C. 4
D. 1

Correct Answers:

$\mathbf{1}$	$\mathbf{2}$	$\mathbf{3}$	$\mathbf{4}$	$\mathbf{5}$	$\mathbf{6}$	$\mathbf{7}$	$\mathbf{8}$	$\mathbf{9}$	$\mathbf{1 0}$
B	B	B	A	A	D	A	B	B	B

Explanations:

1.

Radius, $\mathrm{OA}=4 \mathrm{~cm}$
$\therefore O C=2 \mathrm{~cm}$
By Pythagoras theorem in $\triangle A O C$,

$\therefore A C=\sqrt{42+22}=\sqrt{12}=2 \sqrt{3} \mathrm{~cm}$
$\therefore A B=2 \sqrt{3}+2 \sqrt{3}=4 \sqrt{3} \mathrm{~cm}$
Hence, option B is correct.
2.

The largest chord of a circle is its diameter. So,
Radius $=\frac{\text { Diameter }}{2}=\frac{10.1}{2}=5.05 \mathrm{~cm}$
Hence, option B is correct.
3.

Chord, $\mathrm{AB}=8 \mathrm{~cm}$
Then, $A C=C B=4 \mathrm{~cm}$
Perpendicular distance between centre and chord,

$O C=3 \mathrm{~cm}$
$\therefore \mathrm{OA}=\sqrt{\left(O C^{2}+A C^{2}\right)}$
$=\sqrt{3^{2}+4^{2}}=\sqrt{25}=5 \mathrm{~cm}$
Hence, option B is correct.
4.
$A O=O B=A B$
$\Rightarrow \angle A O B=60^{\circ}$
$[\because \triangle \mathrm{AOB}$ is equilateral $]$

Note : The angle subtended by an arc of a circle at the centre is double the angle subtended by it at any point on the remaining part of the circle.
$\therefore \angle A C B=30^{\circ}$

Hence, option A is correct.
5.

Given, Chords $A B=8 \mathrm{~cm}$ and $C D=6 \mathrm{~cm}$
Then, $\mathrm{AE}=\mathrm{EB}=4 \mathrm{~cm}$ and $\mathrm{CF}=\mathrm{FD}=3 \mathrm{~cm}$
$E F=1 \mathrm{~cm}$

Let $O E=x \mathrm{~cm}$
Then, $\mathrm{OF}=(\mathrm{x}+1) \mathrm{cm}$
$O A=O C=r \mathrm{~cm} \quad(\because$ radius $)$
From $\triangle O A E$, By pythagoras theorem
$O A^{2}=A E^{2}+O E^{2}$
$\Rightarrow r^{2}=4^{2}+x^{2}$
$\Rightarrow x^{2}=r^{2}-16$
From $\triangle O C F$, By pythagoras theorem
$O C^{2}=C F^{2}+O F^{2}$
$r 2=3^{2}+(x+1)^{2}$
$(x+1)^{2}=r^{2}-9$
By equation (ii) - (i),
$(x+1)^{2}-x^{2}=r^{2}-9-r^{2}+16$
$\Rightarrow x^{2}+1+2 x-x^{2}=7$
$\Rightarrow 2 \mathrm{x}=7-1=6$
$\Rightarrow \mathrm{x}=3 \mathrm{~cm}$
\therefore From equation (i),
$9=r^{2}-16$
$\Rightarrow r^{2}=25$
$\Rightarrow r=5 \mathrm{~cm}$
Hence, option A is correct.
6.
$\angle B A C=90^{\circ}$
$A s, B C$ is the diameter of the circle.
$\therefore \mathrm{BC}=\sqrt{A B^{2}+A C^{2}}$

$=\sqrt{8^{2}+6^{2}}=\sqrt{100}=10 \mathrm{~cm}$
\therefore Radius of the circle $=\frac{\text { Diameter }}{2}=\frac{10}{2}=5 \mathrm{~cm}$
Hence, option D is correct.
7.

Given, Chord $\mathrm{AB}=$ Chord $\mathrm{CD}=8 \mathrm{~cm}$
Then, $\mathrm{AP}=\mathrm{PB}=4 \mathrm{~cm}$ and Diameter $=10 \mathrm{~cm}$, then radius $=5 \mathrm{~cm}$
Note : Equal chords of a circle (or of congruent circles) are equidistant from the centre.

$\therefore \mathrm{OP}=\mathrm{OQ}$
From $\triangle O A P$, By pythagoras theorem
$\mathrm{OP}=\sqrt{O A^{2}-A P^{2}}$
$=\sqrt{5^{2}-4^{2}}=\sqrt{9}=3 \mathrm{~cm}$
$\therefore Q P=2 \times O P=2 \times 3=6 \mathrm{~cm}$
Hence, option A is correct.
8.

Given, Common chord $\mathrm{AB}=24 \mathrm{~cm}$
Then, $\mathrm{AD}=\mathrm{DB}=12 \mathrm{~cm}$

Diameter of circle of centre $O=30 \mathrm{~cm}$, Then radius $\mathrm{OA}=15 \mathrm{~cm}$
And, Diamter of circle of centre $\mathrm{O}^{\prime}=26 \mathrm{~cm}$, Then radius $\mathrm{O}^{\prime} \mathrm{A}=13 \mathrm{~cm}$
From $\triangle O A D$, By pythagoras theorem
$O D=\sqrt{O A^{2}-A D^{2}}$
$=\sqrt{15^{2}-12^{2}}=\sqrt{81}=9 \mathrm{~cm}$
From $\triangle O^{\prime} A D$, By pythagoras theorem
$O^{\prime} \mathrm{D}=\sqrt{O^{\prime} A^{2}-A D^{2}}$
$=\sqrt{13^{2}-12^{2}}=\sqrt{25}=5 \mathrm{~cm}$
$\therefore O O^{\prime}=O D+O D^{\prime}=9+5=14 \mathrm{~cm}$
Hence, option B is correct.
9.
$\Theta=72^{\circ}=72 \times \frac{\pi}{180}$ radians $=\frac{2 \pi}{5}$ radians
We know that,
length of arc $=\Theta \times$ radius
$=\frac{2 \pi}{5} \times 21$
$=\frac{2}{5} \times \frac{22}{7} \times 21=\frac{132}{5}=26.4 \mathrm{~cm}$
Hence, option B is correct.
10.

A unique circle can always be drawn through x number of given non-collinear points, then x must be.

Hence, option B is correct.

$\sim^{\prime}-$ SmartKeeda The Question Bank प्रस्तुत करते हैं

 TestZone

 TestZone भारत की सबसे किफायती टेस्ट सीरीज़

12 Month Plan

2017-18 All Test Series

@ Just

₹ 399/300 + फुल लेन्थ टेस्ट

『 श्रेष्ठ विश्लेषण
『 उत्कृष्ट विषय सामग्री
\square बेजोड़ व्याख्या

