-' $^{-}$SmartKeeda The Question Bank
 Presents

 TestZone

 TestZone
 India's least priced Test Series platform

∇

12 Month Plan

2017-18 All Test Series

@ Just

₹ 399/-

300+ Full Length Tests

\checkmark Brilliant Test Analysis
\boxtimes Excellent Content
\checkmark Unmatched Explanations

Circles Questions for CDS, SSC \& Railways Exams

Circle Quiz 3

Directions: Kindly study the following questions carefully and choose the right answer:

1. Two parallel chords are drawn in a circle of diameter 30 cm . The length of one chord is 24 cm and the distance between the two chords is 21 cm . The length of the other chord is
A. 10 cm
B. 18 cm
C. 12 cm
D. 16 cm
2. If two equal circles whose centres are O and O^{\prime}, intersect each other at the point A and $B, O O^{\prime}=12 \mathrm{~cm}$ and $A B=16 \mathrm{~cm}$, then the radius of the circle is
A. 10 cm
B. 8 cm
C. 12 cm
D. 14 cm
3. Chords $A B$ and $C D$ of a circle intersect externally at P. If $A B=6 \mathrm{~cm}, C D=3 \mathrm{~cm}$ and $P D=5 \mathrm{~cm}$, then the length of $P B$ is
A. 5 cm
B. 7.35 cm
C. 6 cm
D. 4 cm
4. A circle (with centre at O) is touching two intersecting lines $A X$ and $B Y$. The two points of contact A and B subtend an angle of 65° at any point C on the circumference of the circle. If P is the point of intersection of the two lines, then the measure of $\angle A P O$ is
A. 25°
B. 65°
C. 90°
D. 40°
5. $A B$ and $C D$ are two parallel chords on the opposite sides of the centre of the circle. If $A B=10 \mathrm{~cm}, C D=24 \mathrm{~cm}$ and the radius of the circle is 13 cm , the distance between the chords is
A. 17 cm
B. 15 cm
C. 16 cm
D. 18 cm
6. $A B$ and $C D$ are two parallel chords of a circle such that $A B=10 \mathrm{~cm}$ and $C D=24$ cm . If the chords are on the opposite sides of the centre and distance between them is 17 cm , then the radius of the circle is :
A. 11 cm
B. 12 cm
C. 13 cm
D. 10 cm
7. The length of the common chord of two circles of radii 30 cm and 40 cm whose centres are 50 cm apart, is (in cm)
A. 12
B. 24
C. 36
D. 48
8. Two circles of same radius 5 cm , intersect each other at A and B. If $A B=8 \mathrm{~cm}$, then the distance between the centre is :
A. 6 cm
B. 8 cm
C. 10 cm
D. 4 cm
9. In a circle of radius 17 cm , two parallel chords of length 30 cm and 16 cm are drawn. If both the chords are on the same side of the centre, then the distance between the chords is
A. 9 cm
B. 7 cm
C. 23 cm
D. 11 cm
10. Two circles touch each other internally. Their radii are 2 cm and 3 cm . The biggest chord of the greater circle which is outside the inner circle is of length
A. 22 cm
B. 32 cm
C. 23 cm
D. 42 cm

Correct Answers:

$\mathbf{1}$	$\mathbf{2}$	$\mathbf{3}$	$\mathbf{4}$	$\mathbf{5}$	$\mathbf{6}$	$\mathbf{7}$	$\mathbf{8}$	$\mathbf{9}$	$\mathbf{1 0}$
B	A	B	A	A	C	D	A	B	D

Explanations:

1.

Given, one chord $A B=24 \mathrm{~cm}$
Then, $A E=E B=12 \mathrm{~cm}$

Diameter $=30 \mathrm{~cm} \Rightarrow$ radius, $\mathrm{AO}=\mathrm{OC}=15 \mathrm{~cm}$
From $\triangle A O E$, By pythagoras theorem
$O E=\sqrt{O A^{2}-A E^{2}}=\sqrt{15^{2}-12^{2}}=\sqrt{81}=9 \mathrm{~cm}$
Distance between two chords, $\mathrm{EF}=21 \mathrm{~cm}$ (given)
$\therefore \mathrm{OF}=\mathrm{EF}-\mathrm{OE}=21-9=12 \mathrm{~cm}$
From \triangle COF, By pythagoras theorem
$C F=\sqrt{O C^{2}+O F^{2}}=\sqrt{15^{2}+12^{2}}=\sqrt{81}=9 \mathrm{~cm}$
$\therefore C D=2 \times 9=18 \mathrm{~cm}$
Hence, option B is correct.
2.

Given, $A B=16 \mathrm{~cm}$ and $O O^{\prime}=12 \mathrm{~cm}$
$\therefore A C=C B=8 \mathrm{~cm}$ and $O C=C O^{\prime}=6 \mathrm{~cm}$

From $\triangle A O C$, By pythagoras theorem
$\therefore \mathrm{OA}=\sqrt{O C^{2}+A C^{2}}$
$=\sqrt{6^{2}+8^{2}}=\sqrt{100}=10 \mathrm{~cm}$
Hence, option A is correct.

3.

Given, $P D=5 \mathrm{~cm}$ Then, $P C=P D-C D=5-3=2 \mathrm{~cm}$
Similarly, $\mathrm{PA}=(\mathrm{PB}-6) \mathrm{cm}$
Note : If two chords $A B$ and $C D$ of a circle intersect inside or
 outside the circle when produced at a point P, then
$\mathrm{PA} \times \mathrm{PB}=\mathrm{PC} \times \mathrm{PD} \quad \Rightarrow \quad(\mathrm{PB}-6) \times \mathrm{PB}=2 \times 5 \quad \Rightarrow \quad \mathrm{~PB} 2-6 \mathrm{~PB}-10=0$
By Sridharacharya formula,
$\frac{-b \pm \sqrt{b^{2}-4 a c}}{2 a}$, There $a=1, b=-6, c=-10$
$\Rightarrow \mathrm{PB}=\frac{6 \pm \sqrt{36+40}}{2}=\frac{6 \pm \sqrt{76}}{2}=\frac{6+8.7}{2}=7.35$
Hence, option B is correct.
4.

Given, $\angle A C B=65^{\circ}$

Note : The angle subtended by an arc of a circle at the centre is double the angle subtended by it at any point on the remaining part of the circle.
$\therefore \angle \mathrm{AOB}=2 \times 65^{\circ}=130^{\circ}$

Note : A tangent at any point of a circle is perpendicular to the radius through the point of contact.
$\therefore \angle \mathrm{OAP}=90^{\circ}$

$\angle \mathrm{AOP}=65^{\circ} \quad\left[\because \angle \mathrm{AOP}=\frac{\angle A O B}{2}\right]$
We know that, the sum of the three angles of a triangle is 180°.
$\therefore \angle \mathrm{APO}=180^{\circ}-90^{\circ}-65^{\circ}=25^{\circ}$

Hence, option A is correct.
5.

Given, Chords $A B=10$ and $C D=24 \mathrm{~cm}$
$\therefore \mathrm{AE}=\mathrm{EB}=5 \mathrm{~cm}$ and $\mathrm{CF}=\mathrm{FD}=12 \mathrm{~cm}$
Radius $\mathrm{AO}=\mathrm{OC}=13 \mathrm{~cm}$

From $\triangle \mathrm{AOE}$, By pytharoas theorem
$\mathrm{OE}=\sqrt{A O^{2}-A E^{2}}$
$=\sqrt{13^{2}+5^{2}}=\sqrt{144}=12 \mathrm{~cm}$
From $\triangle C O F$, By pytharoas theorem
$\mathrm{OF}=\sqrt{O C^{2}-C F^{2}}$
$=\sqrt{13^{2}-12^{2}}=\sqrt{25}=5 \mathrm{~cm}$
$\therefore \mathrm{EF}=\mathrm{OE}+\mathrm{OF}=12+5=17 \mathrm{~cm}$

Hence, option A is corret.
6.
$A B=10 \mathrm{~cm}$ and $C D=24 \mathrm{~cm}$
$\therefore A E=E B=5 \mathrm{~cm}$ and $C F=F D=12 \mathrm{~cm}$
$E F=17 \mathrm{~cm}$

Let, $\mathrm{EO}=\mathrm{xcm}$, then $\mathrm{OF}=(17-\mathrm{x}) \mathrm{cm}$
In $\triangle \mathrm{AOE}$, By pythagoras theorem
$\mathrm{OA}=\sqrt{A E^{2}+O E^{2}}=\sqrt{5^{2}+x^{2}}$
In \triangle COF, By pythagoras theorem
$O C=\sqrt{C F^{2}+O F^{2}}=\sqrt{12^{2}+(17-x)^{2}}$
$O A=O C$ (radius)
$52+x 2=122+(17-x) 2$
$25+x 2=144+289-34 x+x 2$
$34 x=408$
$x=12$
$\therefore O A=\sqrt{5^{2}+12^{2}}=\sqrt{25+144}=\sqrt{169}=13 \mathrm{~cm}$
Hence, option C is correct.
7.
$B D=50 \mathrm{~cm}$
Let, $\mathrm{BC}=\mathrm{xcm}$, then $\mathrm{CD}=(50-\mathrm{x}) \mathrm{cm}$
In $\triangle \mathrm{ABC}$, By pythagoras theorem

$A C=\sqrt{A B^{2}-B C^{2}}=\sqrt{30^{2}-x^{2}}$
In $\triangle A C D$, By pythagoras theorem
$\mathrm{AC}=\sqrt{A D^{2}+C D^{2}}=\sqrt{40^{2}-(50-x)^{2}}$
$\sqrt{30^{2}-x^{2}}=\sqrt{40^{2}-(50-x)^{2}} \quad[\because \mathrm{AC}$ is common for both triangles $]$
$\Rightarrow 900-x^{2}=1600-2500+100 x-x^{2}$
$\Rightarrow 100 x=1800$
$\Rightarrow x=18$
$\therefore A C=\sqrt{30^{2}-18^{2}}$
$=\sqrt{900-324}$
$=\sqrt{576}=24 \mathrm{~cm}$
$\therefore A E=2 \times A C=2 \times 24=48 \mathrm{~cm}$

Hence, option D is correct.
8.
$A B=8 \mathrm{~cm} \quad \Rightarrow \quad A C=4 \mathrm{~cm}$
$O A=5 \mathrm{~cm}$

In $\triangle A O C$, By pythagoras theorem
$O C=\sqrt{5^{2}-4^{2}}=\sqrt{9}=3 \mathrm{~cm}$
$O O^{\prime}=2 \times O C=2 \times 3=6 \mathrm{~cm}$
Hence, option A is correct.
9.
$A B=30 \mathrm{~cm}$ and $C D=16 \mathrm{~cm}$
$\therefore A E=E B=15 \mathrm{~cm}$ and $C F=F D=8 \mathrm{~cm}$
Radii, $\mathrm{OA}=\mathrm{OC}=17 \mathrm{~cm}$

In $\triangle A O E$, By pythagoras theorem
$\mathrm{OE}=\sqrt{O A^{2}-A E^{2}}=\sqrt{17^{2}-15^{2}}=64=8 \mathrm{~cm}$
Again In $\triangle C O F$, By pythagoras theorem
$\mathrm{OF}=\sqrt{O C^{2}-\mathrm{CF}^{2}}=\sqrt{17^{2}-8^{2}}=\sqrt{225}=15 \mathrm{~cm}$
Distance between chords, $\mathrm{EF}=\mathrm{OF}-\mathrm{OE}=15-8=7 \mathrm{~cm}$
Hence, option B is correct.
10.
$O^{\prime} A=O^{\prime} C=O^{\prime} D=3 \mathrm{~cm} \quad[\because$ radii of a circle $]$
$O A=O B=2 \mathrm{~cm}$
$A C=2 \times O A^{\prime}=2 \times 3=6 \mathrm{~cm}$

$A B=2 \times O A=2 \times 2=4 \mathrm{~cm}$
$B C=A C-A B=6-4=2 \mathrm{~cm}$
$\therefore O^{\prime} B=O^{\prime} C-B C=3-2=1 \mathrm{~cm}$
In $\triangle B^{\prime} O^{\prime}$, By pythagoras theorem
$B D=\sqrt{O^{\prime} D^{2}-O^{\prime} B^{2}}=\sqrt{3^{2}-1^{2}}=2 \sqrt{2 \mathrm{~cm}}$
$\therefore D E=2 \times B D=2 \times 2 \sqrt{2}=4 \sqrt{2} \mathrm{~cm}$
Hence, option D is correct.

$\sim^{\prime}-$ SmartKeeda The Question Bank प्रस्तुत करते हैं

 TestZone

 TestZone भारत की सबसे किफायती टेस्ट सीरीज़

12 Month Plan

2017-18 All Test Series

@ Just

₹ 399/300 + फुल लेन्थ टेस्ट

『 श्रेष्ठ विश्लेषण
『 उत्कृष्ट विषय सामग्री
\square बेजोड़ व्याख्या

