-1 SmartKeeda

 Presents

 Presents}

TestZone

India's least priced Test Series platform

12 Month Plan
 2017-18 All Test Series

@ Just

₹ 399/-

300+ Full Length Tests

\checkmark Brilliant Test Analysis
\boxtimes Excellent Content
\checkmark Unmatched Explanations

Circle Questions for SSC Exam.

Circle Quiz 6

Directions: Kindly study the following Questions carefully and choose the right answer:

1. Two circles touch each other externally at P. $A B$ is a direct common tangent to the two circles, A and B are points of contact and $\angle P A B=35^{\circ}$. Then $\angle A B P$ is is
A. 35°
B. 55°
C. 75°
D. 65°
2. In a circle with centre $O, A B$ and $C D$ are two diameters perpendicular to each other. The length of chord AC is :
A. 2 AB
B. $\sqrt{2} \mathrm{AB}$
C. $\frac{1}{2} \mathrm{AB}$
D. $\frac{1}{\sqrt{2}} \mathrm{AB}$
3. O is the centre of the circle. if $\angle B A C=52^{\circ}$, then $\angle O C D$ is equal to

A. 52°
B. 104°
C. 128°
D. 76°
4. What is the area (in cm^{2}) of shaded portion bounded by three semicircle as shown in the figure? (It is given that the radius of two smaller semicircle is 1 cm)

A. 4π
B. $8 \pi-\frac{1}{2}$
C. $4 \pi-\frac{1}{2}$
D. None of these
5. In the given figure ' O ' is the centre of the circle and PAT is the tangent at point A. Find the measures of x°, y°, and z° respectively.

A. $66^{\circ}, 66^{\circ}, 66^{\circ}$
B. $66^{\circ}, 24^{\circ}, 72^{\circ}$
C. $24^{\circ}, 24^{\circ}, 96^{\circ}$
D. $24^{\circ}, 48^{\circ}, 66^{\circ}$
6. AOB is quadrant of a circle with centre O and radius 4.2 cm . If $O D=2 \mathrm{~cm}$, find the area of the shaded region.

A. $8.25 \mathrm{~cm}^{2}$
B. $7.50 \mathrm{~cm}^{2}$
C. $9.66 \mathrm{~cm}^{2}$
D. $6.125 \mathrm{~cm}^{2}$
7. The length of the common chord of two intersecting circles is 24 . If the diameters of the circles are 30 cm and 26 cm , then the distance between the centers of the circles (in cm) is
A. 13
B. 14
C. 15
D. 16
8. The points A, B and C lie on a circle that has radius 4 . If the length of arc $A B C$ is $4 \pi / 3$. What is the length of line segment $A C$?
A. $\frac{4}{3}$
B. $\frac{8}{3}$
C. 3
D. 4
9. Given that $\angle A D B$ and $\angle B D C$ measure 30° and 40° respectively, what will be the measure (in degrees) of $\angle A B C$ in the given diagram?

A. 70
B. 90
C. 110
D. 140
10. A rectangle of area $48 \mathrm{~cm}^{2}$ is inscribed inside a circle of radius 5 cm . What will be the perimeter (in cm) of the rectangle?
A. 20
B. 24
C. 25
D. 28

Correct Answers:

$\mathbf{1}$	$\mathbf{2}$	$\mathbf{3}$	$\mathbf{4}$	$\mathbf{5}$	$\mathbf{6}$	$\mathbf{7}$	$\mathbf{8}$	$\mathbf{9}$	$\mathbf{1 0}$
B	D	A	D	D	C	B	D	C	D

Explanations:

1.

Here, $\triangle \mathrm{AOP}$,
$A O=O P$
$\Rightarrow \angle P A O=\angle A P O=35^{\circ}$
$\Rightarrow \angle A O P=180^{\circ}-\left(2 \times 35^{\circ}\right)=110^{\circ}$
$\Rightarrow \angle \mathrm{POB}=180^{\circ}-110^{\circ}=70^{\circ}$
Also, In \triangle POB, BO = OP
$\Rightarrow \angle \mathrm{PBO}=\angle \mathrm{OPB}=\frac{180^{\circ}-70^{\circ}}{2}=55^{\circ}$
$\Rightarrow \angle A B P=55^{\circ}$
Hence, option B is correct.
2.

$O C=O A=\frac{1}{2} A B$.
$A C^{2}=O A^{2}+O C^{2}=2 O A^{2}$
$=2 \times\left(\frac{1}{2} A B\right)^{2}=\frac{1}{2}(A B)^{2}$
$\therefore A C=\frac{1}{\sqrt{2}} A B$.
Hence, option D is correct.
3. $\angle O D C=\angle B A C=52^{\circ}$ ($\angle \mathrm{s}$ in the same segment).

But OC $=O D \Rightarrow \angle O C D=\angle O D C=52^{\circ}$.
Hence, option A is correct.
4.

Area of the shaded portion $(A+B)=$ Area of the bigger semicircle $(B+C)$ as the two smaller semicircle ' A ' and ' C ' will have equal area
Radius of the smaller semicircle $=1 \mathrm{~cm}$
Now, Radius of the bigger semicircle = Diameter of the smaller semicircle
\therefore Radius of the bigger semicircle $=2 \mathrm{~cm}$
Area of shaded region $=\frac{1}{2} \times \pi \times 2^{2}=2 \pi \mathrm{~cm}^{2}$
Hence, option D is correct.
5. $\because \mathrm{x}^{\circ}$ is an angle in the alternate segment for $\angle B A T$.
$\therefore \angle B A T=x=24^{\circ}$
$\because \mathrm{y}^{\circ}$ is the angle at the centre and x° is angle on the arc
$\therefore y^{\circ}=2 x=2 \times 24=48^{\circ}$
$\because \ln \triangle O A B, \angle O B A=z^{\circ}=\angle O A B$
$\therefore z^{\circ}+48^{\circ}+z^{\circ}=180^{\circ}$
or, $2 z^{\circ}=\left(180^{\circ}-48^{\circ}\right)$
or, $z=\frac{132}{2}=66^{\circ}$
$\therefore \quad \mathrm{x}, \mathrm{y}, \mathrm{z}=24^{\circ}, 48^{\circ}, 66^{\circ}$
Approach II: OA is perpendicular on PT at A.
$\Rightarrow \angle z^{\circ}=90-24=66^{\circ}$
$\Rightarrow \angle y^{\circ}=180-\left(66^{\circ}+66^{\circ}\right)=48^{\circ}$
$\Rightarrow \angle x^{\circ}=\frac{48^{\circ}}{2}=24^{\circ}$
Hence, option D is correct.
6.

Area of the quadrant $=\frac{\pi r^{2}}{4}$
$=\frac{22}{7} \times \frac{4.2 \times 4.2}{4}=13.86 \mathrm{sq} \mathrm{cm}$
Area of $\Delta=\frac{1}{2} \times$ base \times height

Area of $\triangle A O D=\frac{1}{2} \times 4.2 \times 2=4.2 \mathrm{sq} \mathrm{cm}$
\therefore Area of shaded region $=13.86-4.2=9.66 \mathrm{sq} \mathrm{cm}$
Hence, option C is correct.
7.

If $A B=24 \mathrm{~cm}$, therefore, $\mathrm{AC}=\mathrm{CB}=12 \mathrm{~cm}$
And the radius will be $15 \mathrm{~cm} \& 13 \mathrm{~cm}$
$O C=\sqrt{15^{2}-12^{2}}=\sqrt{225-144}=\sqrt{81}=9 \mathrm{~cm}$
$\mathrm{O}^{\prime} \mathrm{C}=\sqrt{13^{2}-12^{2}}=\sqrt{169-144}=\sqrt{25}=5 \mathrm{~cm}$
$\therefore O O^{\prime}=9+5=14 \mathrm{~cm}$
Hence, option B is correct.
8.

In the given figure, O is the center of the circle that contains A, B and C and x is the degree measure of $\angle A O C$. Since the circumference of the circle is $2 \pi(4)=8 \pi$ and there are 360° in the circle, the ratio of the length of arc $A B C$ to the circumference of the circle is the same as the ratio of x to 360 . Therefore,
$\frac{\frac{4 \pi}{3}}{8 \pi}=\frac{x}{360}$. Then
$x=\frac{\frac{4 \pi}{3} 360}{8 \pi}=\frac{480 \pi}{8 \pi}=60$.

This means that $\triangle A O C$ is an isosceles triangle with side lengths $O A=O C=4$ and vertex angle measuring 60°.

The base angles of must have equal measures and the sum of their measures must be $180^{\circ}-60^{\circ}=120^{\circ}$. Therefore, each base angle measure $60^{\circ}, \triangle \mathrm{AOC}$ is equilateral, and $\mathrm{AC}=4$.

Hence, option D is correct.
9. $\mathrm{m} \angle \mathrm{ADC}=\mathrm{m} \angle \mathrm{ADB}+\mathrm{m} \angle \mathrm{BDC}=30^{\circ}+40^{\circ}=70^{\circ}$
$\therefore m \angle A B C=180-m \angle A D C=180-70=110^{\circ}$
(\because Angles subtended by a chord at distinct points on the circumference, in alternate segments, are supplementary.

Or if we join $A B, B C, C D$ and $A D$ then the resulting quadrilateral is a cyclic quadrilateral. Opposite angles of cyclic quadrilateral are supplementary angles.)

Hence, option C is correct.
10. Let the length of the rectangle be $L \mathrm{~cm}$ and the breadth be Bcm .

Area of the rectangle $=48 \mathrm{~cm}^{2}$
$\therefore \mathrm{L} \times \mathrm{B}=48$
Also, the diagonal of the rectangle will coincide with a diameter of the circle, because the angle in a semicircle will be a right angle.
As all four angles of a rectangle are right angles, the diagonals of the rectangle must also be diameters of the circle.
\therefore Diagonal of a rectangle $=2 \times \mathrm{R}=10 \mathrm{~cm}$
Now, the diagonal of a rectangle $=\sqrt{\mathrm{L}^{2}+\mathrm{B}^{2}}$
$\therefore \mathrm{L}^{2}+\mathrm{B}^{2}=100$
We know that $L^{2}+B^{2}=100$ and that $L \times B=48$
$\therefore L^{2}+B^{2}+2 \times L \times B=100+2 \times 48=\sqrt{196}=(L+B)^{2}$
The positive root of $(L+B)$ is therefore $196=14 \mathrm{~cm}$
\therefore The perimeter of the rectangle is equal to $2 \times(L+B)=28 \mathrm{~cm}$
Hence, option D is correct.

$\sim^{\prime}-$ SmartKeeda The Question Bank प्रस्तुत करते हैं

 TestZone

 TestZone भारत की सबसे किफायती टेस्ट सीरीज़
 ■ (3)

12 Month Plan

2017-18 All Test Series

@ Just

₹ 399/-
 300 + फुल लेन्थ टेस्ट

『 श्रेष्ठ विश्लेषण
『 उत्कृष्ट विषय सामग्री
\checkmark बेजोड़ व्याख्या

