-1 SmartKeeda

 Presents

 Presents}

TestZone

India's least priced Test Series platform

12 Month Plan
 2017-18 All Test Series

@ Just

₹ 399/-

300+ Full Length Tests

\checkmark Brilliant Test Analysis
\boxtimes Excellent Content
\checkmark Unmatched Explanations

Circle Questions for SSC Exam.

Circle Quiz 7

Directions: Kindly study the following Questions carefully and choose the right answer:

1. A tangent YZ is drawn at any point Y of a circle of radius $3.5 \mathrm{~cm} . \mathrm{YX}_{1}$ and $\mathrm{YX} \mathrm{X}_{2}$ are the two chords of this circle. If $\angle Z Y X_{2}=45^{\circ}$ and O is the centre of the circle, then the length of arc YX_{2} is (assume $\pi=22 / 7$)
A. 6.5 cm
B. 7 cm
C. 6 cm
D. 5.5 cm
2. In the given figure, O is the centre of the circle. If $\angle P R Q=40^{\circ}$, then what is $\angle O P Q$?

A. 30°
B. 40°
C. 150°
D. 50°
3. If a circle is provided with measure of 19° on centre, is it possible to divide the circle into 360 equal parts?
A. Never
B. Possible when one more measure of 20 is given
C. Always
D. Possible if one more measure of 21 is given
4. The distance between two parallel chords of length 6 cm each in a circle of diameter 10 cm is
A. 8 cm
B. 7 cm
C. 6 cm
D. 5.5 cm
5. Three circles of diameter 10 cm each, are bound together by a rubber band, as shown in the figure. The length of the rubber band, in cm , if it is stretched as shown, is

A. 30
B. $30+10 \pi$
C. 10π
D. $60+20 \pi$
6. $C D$ is a direct common tangent to two circles intersecting each other at A and B. Then, $\angle C A D+\angle C B D=$?

A. 90°
B. 180°
C. 360°
D. 120°
7. The values in x and y in the given figure are measure of angles. The value of $x+y$ is equal to

A. 90°
B. 85°
C. 75°
D. 65°
8. The chord $A B$ of a circle of centre O subtends an angle Θ with tangent at A to the circle. $\angle A B O$ is
A. Θ
B. $90^{\circ}-\Theta$
C. $90^{\circ}+\Theta$
D. $2(\pi-\Theta)$
9. $A B C$ is a triangle and O is the centre of its circumcircle and $\angle O B C=22^{\circ}$, then $\angle B A C$ will be

A. 22°
B. 44°
C. 68°
D. 46°
10. A well of diameter 3 m is dug 14 m deep. The earth taken out of it has been spread evenly all around it in the shape of a circular ring of the width 4 m to form an embankment. Find the height of the embankment.
A. 4.25 m
B. 2.25 m
C. 1.125 m
D. 1.750 m

Correct Answers:

$\mathbf{1}$	$\mathbf{2}$	$\mathbf{3}$	$\mathbf{4}$	$\mathbf{5}$	$\mathbf{6}$	$\mathbf{7}$	$\mathbf{8}$	$\mathbf{9}$	$\mathbf{1 0}$
D	D	C	A	B	B	D	B	C	C

Explanations:

1. $Y Z$ is the tangent of a circle drawn at point Y.

$\angle Z Y X_{2}=45^{\circ}$
$\therefore \angle Y X_{1} X_{2}=45^{\circ}$ (Property of a circle)
$\angle Y O X_{2}=2 \angle Y X_{1} X_{2}=2 \times 45=90^{\circ}$
Length of arc YX_{2}
$=\frac{90}{360} \times 2 \pi r$ (where r is the radius of circle)
$=\frac{1}{4} \times 2 \times \frac{22}{7} \times 3.5=5.5 \mathrm{~cm}$

Hence, option D is correct.
2. Given that, $\angle P R Q=40^{\circ}$, then what is $\angle P O Q=80^{\circ}$

(\therefore The angle subtended by an arc at the centre is double the angle subtended by the same arc at a point on the remaining circle). In triangle OPQ, OP = OQ (radii)
$\therefore \angle \mathrm{OPQ}=\angle \mathrm{OQP}(\because$ Angles opposite to equal sides)
$\angle O P Q+\angle O Q P+80=180^{\circ} \Rightarrow \angle O P Q=50^{\circ}$
Hence, option D is correct.
3. Since, we are given a measure of a 19° angle, if we use the measure 19 times, we would be able to measure 361° and hence, we can measure $361-360=1^{\circ}$.

Hence, it would be possible to divide the circle into 360 equal parts.
Hence, option C is correct.
4.

$A B=C D$
$O P=O Q$
From \triangle OAP
$O P=O A^{2}-A P^{2}=\sqrt{5^{2}-3^{2}}=\sqrt{25-9}=\sqrt{16}=4 \mathrm{~cm}$
$\therefore Q P=2 \times O P=8 \mathrm{~cm}$
Hence, option A is correct.

5. Perimeter of diameters:

Perimeter of circumference:

Hence, the length of the rubber band $=3 d+2 \pi r=(30+10 \pi) \mathrm{cm}$ Hence, option B is correct.
6. Joint AB then, $\angle \mathrm{CAB}=\angle \mathrm{BCD}(\angle \mathrm{s}$ in alternate segments)

And, $\angle \mathrm{DAB}=\angle \mathrm{CDB}$ ($\angle \mathrm{s}$ in alternate segments)
$\angle \mathrm{CAD}=\angle \mathrm{CAB}+\angle \mathrm{DAB}=\angle \mathrm{BCD}+\angle \mathrm{CDB}$
$\Rightarrow \angle C A D+\angle C B D=\angle B C D+\angle C D B+\angle C B D=180^{\circ}(\angle$ s of a $\Delta)$

Hence, option B is correct.
7. $A s \angle B+\angle D=180^{\circ}$
and $\angle A+\angle C=180^{\circ}$
So, $x+10+5 y+5=180^{\circ}$
or, $x+5 y=165^{\circ}$
And $2 x+4+4 y-4=180^{\circ}$
or, $2 x+4 y=180^{\circ} \quad$....(ii)
Solving (i) and (ii), we get
$x=40^{\circ}$ and $y=25^{\circ}$
Hence, $x+y=40^{\circ}+25^{\circ}=65^{\circ}$
Hence, option D is correct.
8.

$\angle B A S=\angle A O B=\Theta$
(angles in alternate segments)
$\angle O A B=90^{\circ}-\angle B A S$
$\angle O A B=90^{\circ}-\Theta$
$\angle O A B=\angle A B O$
$[\because \mathrm{OA}=\mathrm{OB}]$
$\angle A B O=90^{\circ}-\Theta$
Hence, option B is correct.
9. $\mathrm{OB}=\mathrm{OC}=$ radius $\Rightarrow \angle \mathrm{OCB}=\angle \mathrm{OBC}=22^{\circ}$
$\Rightarrow \angle B O C=180^{\circ}-(\angle O B C+\angle O C B)$
$=180^{\circ}-\left(22^{\circ}+22^{\circ}\right)$
$=180^{\circ}-44^{\circ}$
$=136^{\circ}$
$\Rightarrow \angle \mathrm{BAC}=\frac{1}{12} \angle \mathrm{BOC}$
[Angle made on circumference by Chord $=1 / 2$ angle made on centre]
$=\frac{1}{2} \times 136^{\circ}=68^{\circ}$

Hence, option C is correct.
10. Let the radius and height of the well be r and h respectively.

Volume of the earth dug out = Volume of the embarkment
$\pi r^{2} h=$ Area of the earth spread all around the well x height of the embarkment $=\pi\left\{(r+4)^{2}-r^{2}\right\} \times$ height of the embarkment

Height of embankment $=\frac{r^{2} h}{\left\{(r+4)^{2}-r^{2}\right\}}$
$=\frac{1.5 \times 1.5 \times 14}{(5.5)^{2}-(1.5)^{2}}=\frac{1.5 \times 1.5 \times 14}{7 \times 4}=1.125 \mathrm{~m}$
Hence, option C is correct.

$\sim^{\prime}-$ SmartKeeda The Question Bank प्रस्तुत करते हैं

 TestZone

 TestZone भारत की सबसे किफायती टेस्ट सीरीज़
 ■ (3)

12 Month Plan

2017-18 All Test Series

@ Just

₹ 399/-
 300 + फुल लेन्थ टेस्ट

『 श्रेष्ठ विश्लेषण
『 उत्कृष्ट विषय सामग्री
\checkmark बेजोड़ व्याख्या

