Presents

TestZone

India's least priced Test Series platform

12 Month Plan

2019-20 All Test Series
@ Just

₹ 499/-

300+ Full Length Tests

$$
\begin{aligned}
& \boxtimes \text { Brilliant Test Analysis } \\
& \boxtimes \text { Excellent Content } \\
& \boxed{\text { Unmatched Explanations }} \\
& \text { JOIN NOW }
\end{aligned}
$$

Height \& Distance Questions for CGL Tier 2, CGL Tier 1 and SSC 10+2 Exams

HEIGHT AND DISTANCE QUIZ 1

Directions: Study the following questions carefully and choose the right answer:

1. The angles of depression of two ships from the top of a light house are 45° and 30° towards east. If the ships are $\mathbf{2 0 0} \mathbf{~ m}$ apart, find the height of the light house.
A. 100 m
B. 173 m
C. 200 m
D. 273 m
2. The angle of elevation of the top of anfinished pillar at a point 150 m from its base is 30°. If the angle of elevation at the same point is to be 45°, then the pillar has to be raised to a height of how many metres?
A. 59.4 m
B. 61.4 m
C. 62.4 m
D. 63.4 m
3. From the top of a cliff 90 m high, the angles of depression of the top and bottom of a tower are observed to be 30° and 60°, respectively. What is the height of the tower?
A. 30 m
B. 45 m
C. 60 m
D. 75 m
4. A telegraph post gets broken at a point against a storm and its top touches the ground at a distance 20 m from the base of the post making an angle 30° with the ground. What is the height of the post?
A. $\frac{40}{\sqrt{3}} \mathrm{~m}$
B. $\frac{20}{\sqrt{3}} \mathrm{~m}$
C. $\frac{40}{\sqrt{3}} \mathrm{~m}$
C. $40 \sqrt{3} \mathrm{~m}$
5. The shadow of a tower is 15 m when the sun's elevation is 30°. What is the length of the shadow when the sun's elevation is 60° ?
A. 3 m
B. 4 m
C. 5 m
D. 6 m
6. At an instant, the length of the shadow of a pole is square root of 3 times the height of the pole. Find the angle of elevation of the turn.
A. 30°
B. 45°
C. 60°
D. 75°
7. Two poles of heights 6 m and 11 m stand vertically upright on a plane ground. If the distance between their feet is 12 m , what is the distance between their tops?
A. 11 m
B. 12 m
C. 13 m
D. 14 m
8. A pole stands vertically, inside a saclene triangular park $A B C$, if the angle of elevation of the top of the pole from each corner of the park is same, then in $\triangle A B C$, the foot of the pole is at the
A. centroid
B. circumcentre
C. incentre
D. orthocenter
9. If the anlge of elevation of a balloon from two consecutive km stones along a road are 30 degree and 60 degree respectively, then the height of the balloon above the ground will be
A. 3 km 2
B. 1 km
C. 2 km
D. 33 km
10. A vertical stick 12 cm long casts a shadow 8 cm long on the ground. At the same time, a tower casts a shadow 40 m long on the ground. The height of the tower is
A. 72 m
B. 60 m
C. 65 m
D. 70 m

Correct answers:

1	2	3	4	5	6	7	8	9	10
D	D	C	B	C	A	C	B	A	B

Explanations:

1.

$\angle A C B=45^{\circ}$
$\angle \mathrm{ADB}=30^{\circ}$

and distance between two ships, i.e.,
$C D=200 \mathrm{~m}$

Then, $\mathrm{AB}=$?

Let $B C=x m$

In $\triangle A B C$,
$\tan 45^{\circ}=\frac{A B}{B C}$
$\left(\because \tan 45^{\circ}=1\right)$
$1=\frac{A B}{x}$
$\therefore A B=x m \ldots$....(i)
In $\triangle A B D, \tan 30^{\circ}=\frac{A B}{B D}$
$\therefore \frac{1}{\sqrt{3}}=\frac{A B}{x+200}$
$\left(\because \tan 30^{\circ}=1 / \mathrm{v} 3\right)$
$x=\sqrt{3} A B-200 \ldots$ (ii)
From Eqs. (i) and (ii),
$A B=\sqrt{3} A B-200$
$\sqrt{3} A B-A B=200$
$0.732 \mathrm{AB}=200$
$(\because \sqrt{3}=1.732)$
$A B=\frac{200}{0.732}=273.22$

273 m

Hence, option D is correct.
2.

Given, $B C=150 \mathrm{~m}$
$\angle A C B=30^{\circ}$
and, $\angle D C B=45^{\circ}$
Then, $A D=$?
$\ln \triangle A B C, \tan 30^{\circ}=\frac{A B}{B C}$
$\frac{1}{\sqrt{ } 3}=\frac{\mathrm{AB}}{150}$
$\therefore \mathrm{AB}=\frac{150}{\sqrt{ } 3}=86.6 \mathrm{~m}$
In $\triangle D B C, \tan 45^{\circ}=\frac{D B}{B C}$
$1=\frac{\mathrm{DB}}{150}$
$D B=150$
$A D+A B=150$
$[\because D B=A D+A B]$
$\therefore A D=150-A B$
$=150-86.6=63.4 \mathrm{~m}$

Hence, option D is correct.
3.

Given, $\mathrm{AB}=90 \mathrm{~m}$
$\angle A D E=30^{\circ}$
And $\angle \mathrm{ACB}=60^{\circ}$

Then, $\mathrm{DC}=$?

Ratio of angles,
$\frac{\tan 30^{\circ}}{\tan 60^{\circ}}=\frac{\frac{A E}{E D}}{\frac{A B}{B C}}$
$[\because E D=B C]$
$\frac{\frac{1}{\sqrt{3}}}{\sqrt{3}}=\frac{A E}{90}$
$\frac{1}{3}=\frac{\mathrm{AE}}{90}$
$A E=30 \mathrm{~m}$

Now, DC = EB
$=A B-A E$
$=90-30=60 \mathrm{~m}$

Hence, option C is correct.
4.

Given, $\mathrm{BC}=20 \mathrm{~m}$
$\angle A C B=30^{\circ}$

Total height of the telegraph post is $(A B+C A)=$?

In $\triangle A B C, \tan 30^{\circ}=\frac{A B}{B C}$
$\frac{1}{\sqrt{3}}=\frac{A B}{20}$
$\therefore A B=\frac{20}{\sqrt{ } 3} \mathrm{~m}$

Now, $\cos 30^{\circ}=\frac{B C}{A C}$
V3 20
$2=\mathrm{AC}$
$\therefore A C=\frac{40}{\sqrt{ } 3} \mathrm{~m}$

So, $A B+C A=\frac{20}{\sqrt{ } 3}+\frac{40}{\sqrt{ } 3}=\frac{60}{\sqrt{ } 3}$
$=20 \mathrm{~V} 3 \mathrm{~m}$

Hence, option B is correct.
5.

Given, $\angle A D B=30^{\circ}$ and $\angle A C B=60^{\circ}$
When the sun's elevation is 30°, the shaadow of tower is " $\mathrm{BD}=15 \mathrm{~m}$ " and when the sun's elevation is 60°, the shadow of tower is " $\mathrm{BC}=$? "

Let, $B C=x \mathrm{~m}$
In $\triangle A B D, \tan 30^{\circ}=A B / B D$
$\frac{1}{\sqrt{3}}=\frac{A B}{15}$
$\therefore A B=\frac{15}{\sqrt{ } 3}$

In $\triangle A B C, \tan 60^{\circ}=A B / B C$
$v 3=\frac{A B}{x}$
$\therefore \mathrm{AB}=\mathrm{x} \sqrt{ } 3$
From Eqs. (i) and (ii), we get
x v3 $=\frac{15}{\sqrt{ } 3}$
$\mathrm{x}=5 \mathrm{~m}$

Hence, option C is correct.
6.

Let $A B=x$

Then, $B C=\sqrt{3} x$
and $\theta=$?
$\ln \triangle A B C, \tan \theta=\frac{x}{\sqrt{3} x}$
$\tan \theta=\frac{1}{\sqrt{3}}$
$\tan \theta=\tan 30^{\circ}$
$\left[\because \tan 30^{\circ}=1 / \mathrm{V} 3\right]$
$\therefore \theta=30^{\circ}$

Hence, option A is correct.
7.

Given that ther are two poles
$A E=11 \mathrm{~m}$
and, $C D=6 \mathrm{~m}$
$\therefore B E=6 \mathrm{~m}$
$[\because C D=B E]$
$\therefore A B=A E-B E=11-6=5 m$
distance between their feet
$E D=12 \mathrm{~m}$
$\therefore B C=12 \mathrm{~m}[\because \mathrm{ED}=\mathrm{BC}]$

Now, $\mathrm{AC}=$?

In $\triangle A B C$,
From Pythagorus theorum,
$A C^{2}=A B^{2}+B C^{2}$
$A C^{2}=5^{2}+12^{2}$
$A C^{2}=25+144=169$
$A C=V 169$
$A C=13$

Hence, option C is correct.
8.

$A P=C P=B P$

It is possible only when $O A=O B=O C$ i.e. radii of circum circle.

Hence, option B is correct.
9.

$A B=$ Height of balloon $=h \mathrm{~km}$
$B D=x k m, C D=1 \mathrm{~km}$

From $\triangle \mathrm{ABD}$,
$\tan 60^{\circ}=\frac{A B}{B D}$
$\Rightarrow \sqrt{3}=\frac{h}{x}$
$\Rightarrow \quad x=\frac{h}{\sqrt{3}} \mathrm{~km}$
From $\triangle \mathrm{ABC}$,

$\tan 30^{\circ}=\frac{A B}{B C}$
$\Rightarrow \frac{1}{\sqrt{3}}=\frac{h}{\frac{h}{\sqrt{3}}+1}$
$\Rightarrow \sqrt{3} h=\frac{h}{\sqrt{3}}+1$
$\Rightarrow \sqrt{3} h-\frac{h}{\sqrt{3}}-1$
$\Rightarrow \frac{3 \mathrm{~h}-\mathrm{h}}{\sqrt{3}}=1$
$\Rightarrow 2 \mathrm{~h}=\sqrt{3} \Rightarrow \mathrm{~h}=\frac{\sqrt{3}}{2} \mathrm{~km}$

Hence, option A is correct.
10.

We can solve it through ratio proportion rule,
let the tower is x m long, then
12 cm stick casts $\rightarrow 8 \mathrm{~cm}$ shadow
x m tower casts $\rightarrow 40 \mathrm{~m}$ shadow

On cross multiplying, we get
$x=\frac{12 \times 40}{8}=60 \mathrm{~m}$

Hence, option B is correct.

$-\dot{-1}$ - SmartKeeda

tug mis

TestZone

भारत की सबसे किफायती टेस्ट सीरीज़

12 Month Plan

2019-20 All Test Series
@ Just

₹ $499 /-$

300 + फुल लेन्थ टेस्ट

```
- श्रेष्ठ विश्लेषण
『 उत्कृष्ट विषय सामग्री
\(\checkmark\) बेजोड़ व्याख्या
```

