Presents

TestZone

India's least priced Test Series platform

12 Month Plan

2019-20 All Test Series
@ Just

₹ 499/-

300+ Full Length Tests

$$
\begin{aligned}
& \boxtimes \text { Brilliant Test Analysis } \\
& \boxtimes \text { Excellent Content } \\
& \boxed{\text { Unmatched Explanations }} \\
& \text { JOIN NOW }
\end{aligned}
$$

Height and Distance Questions for CGL Tier 2, CGL Tier 1, SSC 10+2 Exams

HEIGHT AND DISTANCE QUIZ 2

Directions: Study the following questions carefully and choose the right answer:

1. The top of two poles of height 24 m and 36 m are connected by a wire. If the wire makes an angle of 60° with the horizontal, then the length of the wire is
A. 6 m
B. 8 V 3 m
C. 8 m
D. $6 \sqrt{ } 3 \mathrm{~m}$
2. From a point P on the ground the angles of elevation of the top of a 10 m tall building is 30°. A flag is hoisted at the top of the building and the angle of elevation of the top of the flagstaff from P is 45° Find the length of the flagstaff. (Take $\sqrt{ } 3=1.732$)
A. $10(\sqrt{ } 3+2) m$
B. $10(\sqrt{ } 3+1) m$
C. 10 V 3 m
D. 7.32 m
3. If the angle of elevation of the sun changes from 30° to 45°, the length of the shadow of a pillar decreases by 20 metres. The height of the pillar is
A. $20(\sqrt{ } 3-1) m$
B. $20(\sqrt{ } 3+1) m$
C. $10(\sqrt{ } 3-1) m$
D. $10(\mathrm{v} 3+1) \mathrm{m}$
4. The angle of elevation of the top of a tower from two points A and B lying on the horizontal through the foot of the tower are respectively 15° and 30°. If A and B are on the same side of the tower and $A B=48$ metre, then the height of the tower is :
A. $24 \sqrt{ } 3$ metre
B. 24 metre
C. $24 \sqrt{ } 2$ metre
D. 96 metre
5. At a point on a horizontal line through the base of a monument, the angle of elevation of the top of the monument is found to be such that its tangent is $1 / 5$. On walking 138 metres towards the monument the secant of the angle of elevation is found to be $V(193) / 12$. The height of the monument (in meter) is
A. 35
B. 49
C. 42
D. 56
6. The distance between two pillars of length 16 metres and 9 metres is x metres. If two angles of elevation of their respective top from the bottom of the other are complementary to each other, then the value of x (in metres) is
A. 15
B. 16
C. 12
D. 9
7. The angle of elevation of the top of a building from the top and bottom of a tree are x and y respectively. If the height of the tree is h metre, then (in metre) the height of the building is
A. $\frac{h \cot x}{\cot x+\cot y}$
B. $\frac{h \cot y}{\cot x+\cot y}$
C. $\frac{h \cot x}{\cot x-\cot y}$
D. $\frac{h \cot y}{\cot x-\cot y}$
8. The angle of elevation of the top of a tower from a point A on the ground is 30°. On moving a distance of $\mathbf{2 0}$ metres towards the foot of the tower to a point B, the angle of elevation increases to 60°. The height of the tower is
A. $\sqrt{ } 3 \mathrm{~m}$
B. $5 \sqrt{ } 3 \mathrm{~m}$
C. 10 V 3 m
D. 20 V 3 m
9. Two poles of equal height are standing opposite to each other on either side of a road which is 100 m wide. From a point between them on road, angle of elevation of their tops are 30° and 60°. The height of each pole (in metre) is
A. 25 V 3
B. 20 V 3
C. 28 V 3
D. 30 V 3
10. A telegraph post is bent at a point above the ground due to storm. Its top just meets the ground at a distance of 8 V 3 meters from its foot and makes an angle of 30°, then the height of the post is :
A. 16 metres
B. 23 metres
C. 24 metres
D. 10 metres

Correct answers:

1	2	3	4	5	6	7	8	9	10
B	D	D	B	C	C	C	C	A	C

Explanations:

1.

$D E=36-24=12 m$

From \triangle ADE,
$\sin 60^{\circ}=\frac{D E}{A D}$
$\Rightarrow \frac{\sqrt{3}}{2}=\frac{12}{A D}$
$\Rightarrow A D=\frac{12 \times 2}{\sqrt{3}}=8 \sqrt{3} \mathrm{~m}$
Hence, option B is correct.
2.

$\mathrm{AC}=$ Flag, $\mathrm{AB}=$ building $=10 \mathrm{~m}$
$\angle \mathrm{APB}=30^{\circ} ; \angle \mathrm{CPB}=45^{\circ}$

In $\triangle \mathrm{APB}$,
$\tan 30^{\circ}=\frac{A B}{P B}$
$\Rightarrow \frac{1}{\sqrt{3}}=\frac{10}{P B}$
$\Rightarrow \mathrm{PB}=10 \sqrt{3} \mathrm{~m}$

In $\triangle P B C$,
$\tan 45^{\circ}=\frac{\mathrm{BC}}{\mathrm{PB}}$
$\Rightarrow 1=\frac{A B+A C}{P B}$
$\Rightarrow P B=A B+A C \Rightarrow 10 \sqrt{3}=10+A C$
$\Rightarrow A C=10 \sqrt{3}-10$
$\Rightarrow 10(\sqrt{3}-1) \mathrm{m}=10(1.732-1) \mathrm{m}$
$=10 \times 0.732=7.32 \mathrm{~m}$.

Hence, option D is correct.
3.

Let, the height of the pillar, $A B=h$ metre.

When the sun's angle of elevation was 30°, then the length of shadow of the pillar is BD.
And, when the sun's angle of elevation is 45°, then the length of shadow of the pillar is $B C=x$ metre (let).

When the sun changes from 30° to 45°, then the length of shadow of the pillar decreases CD $=20$ (given)
$\therefore B D=B C+C D=(x+20) m$

In $\triangle A B C$,
$\tan 45^{\circ}=\frac{A B}{B C} \Rightarrow 1=\frac{h}{x}$
$\Rightarrow \mathrm{h}=\mathrm{x}$
Now, in $\triangle A B D$,
$\Rightarrow \tan 30^{\circ}=\frac{A B}{B D} \Rightarrow \frac{1}{\sqrt{3}}=\frac{h}{x+20}$
\Rightarrow h $3=x+20$
$\Rightarrow \mathrm{h} \sqrt{3}=\mathrm{h}+20 \quad$ [From eq. (i)]
$\Rightarrow \mathrm{h}(\sqrt{3}-1)=20$
$\Rightarrow h=\frac{20}{\sqrt{3}-1} \times \frac{\sqrt{3}+1}{\sqrt{3}+1}$
$=\frac{20(\sqrt{3}+1)}{2}=10(\sqrt{3}+1) m$
\therefore The height of the pillar is $10(\sqrt{ } 3+1)$ metre.
Hence, option D is correct.
4.

Given, $\mathrm{AB}=48 \mathrm{~m}$

Let, the height of the tower, $C D=h$ metre
And, $B C=x$ metre
$\therefore A C=A B+B C=(48+x) m$

In $\triangle B C D$,
$\tan 30^{\circ}=\frac{C D}{B C} \Rightarrow \frac{1}{\sqrt{3}}=\frac{h}{x}$
$x=h \quad \sqrt{3} \quad \ldots$ (i)
Now, in ACD,

$$
\begin{aligned}
& \tan 15^{\circ}=\frac{C D}{A C} \\
& \Rightarrow \tan \left(45^{\circ}-30^{\circ}\right)=\frac{h}{48+x} \\
& \Rightarrow \frac{\tan 45^{\circ}-\tan 30^{\circ}}{1+\tan 45^{\circ} \tan 30^{\circ}}=\frac{h}{48+x} \\
& \quad\left[\because \tan (A-B)=\frac{\tan A-\tan B}{1+\tan A \tan B}\right]
\end{aligned}
$$

$$
\begin{aligned}
& \Rightarrow \frac{1-\frac{1}{\sqrt{3}}}{1+\frac{1}{\sqrt{3}}}=\frac{h}{48+x} \\
& \Rightarrow \frac{\sqrt{3}-1}{\sqrt{3}+1}=\frac{h}{48+x} \\
& \Rightarrow \frac{\sqrt{3}-1}{\sqrt{3}+1} \times \frac{\sqrt{3}-1}{\sqrt{3}-1}=\frac{h}{48+x} \\
& \Rightarrow \frac{(\sqrt{3}-1)^{2}}{2}=\frac{h}{48+x} \\
& \Rightarrow 2-\sqrt{3}=\frac{h}{48+h \sqrt{3}} \quad[\text { From eq. (i)] } \\
& \Rightarrow h=96+2 h \quad \sqrt{3}-48 \sqrt{3}-3 h \\
& \Rightarrow 4 h-2 h \sqrt{3}=48(2-\sqrt{3}) \\
& \Rightarrow 2 h(2-\sqrt{3})=48(2-\sqrt{3}) \\
& \Rightarrow h=24 m
\end{aligned}
$$

\therefore The height of the tower is 24 metre.

Hence, option B is correct.
5.

Given, the distance walking, CD = 138 m
Let, The height of the monument, $\mathrm{AB}=\mathrm{h}$ metre
$B D=x$ metre,$\angle A C B=\alpha$ and $\angle A D B=\beta$
$\therefore \tan \alpha=\frac{1}{5} \quad$ and $\quad \sec \beta=\frac{\sqrt{193}}{12}$
$\therefore B C=C D+B D=(138+x) m$

We know that,
$\tan \beta=\sqrt{\sec ^{2} \beta-1}=\sqrt{\frac{193}{144}-1}=\sqrt{\frac{49}{144}}=\frac{7}{12}$
In $\triangle A B C$,
$\tan \alpha=\frac{A B}{B C} \Rightarrow \frac{1}{5}=\frac{\mathrm{h}}{138+x}$
$x=5 h-138 \quad . . .(i)$

Now, in $\triangle A B D$,
$\tan \beta=\frac{A B}{B D} \Rightarrow \frac{7}{12}=\frac{h}{x}$
$\Rightarrow 7 x=12 h$
$\Rightarrow 7(5 h-138)=12 h \quad[$ From eq. (i)]
$\Rightarrow 35 \mathrm{~h}-966=12 \mathrm{~h}$
$\Rightarrow 23 \mathrm{~h}=966$
$\Rightarrow \mathrm{h}=42 \mathrm{~m}$
\therefore The height of the monument is 42 metre.

Hence, option C is correct.
6.

Given, $A B=16 \mathrm{~m}, \mathrm{CD}=9 \mathrm{~m}$ and $\mathrm{BC}=\mathrm{x}$ metre

And, $\angle A C B$ and $\angle C B D$ are complementary.
\therefore Let, $\angle A C B=\Theta$ and $\angle C B D=\left(90^{\circ}-\Theta\right)$
In $\triangle A B C$,
$\tan \Theta=\frac{A B}{B C} \Rightarrow \tan \Theta=\frac{16}{x} \quad \ldots$ (i)
Now, In $\triangle B C D$,
$\tan \left(90^{\circ}-\Theta\right)=\frac{C D}{B C}$
$\cot \theta=\frac{9}{x}$
$\left[\because \tan \left(90^{\circ}-\Theta\right)=\cot \Theta\right]$

By multiplying eq. (i) \& (ii),
$\tan \Theta \cot \Theta=\frac{16}{x} \times \frac{9}{x}$
$1=\frac{144}{x^{2}}$
$[\because \tan \Theta \cot \Theta=1]$
$x^{2}=144$
$x=12 \mathrm{~m}$

Hence, option C is correct.
7.

Given, the height of the tree, $C D=h$ metre

Let, the height of the building, $\mathrm{AB}=\mathrm{H}$ metre

And, $B C=$ a metre
$\therefore A E=A B-E B=(H-h)$ metre $\quad[\because C D=B E]$
In $\triangle A B C$,
$\cot y=\frac{B C}{A B}=\frac{a}{H}$
$\mathrm{a}=\mathrm{H} \cot \mathrm{y}$

Now, in $\triangle A D E$,
$\cot x=\frac{D E}{A E}=\frac{a}{H-h}$
$a=(H-h) \cot x$
From equations (i) and (ii),
$H \cot y=(H-h) \cot x=H \cot x-h \cot x$
$H(\cot x-\cot y)=h \cot x$
$H=\frac{h \cot x}{\cot x-\cot y}$
\therefore The height of the building
$=\frac{h \cot x}{\cot x-\cot y}$ metre.

Hence, option C is correct.
8.

Given, $\mathrm{AB}=20 \mathrm{~m}$
Let, the height of the tower $=\mathrm{h}$ metre
And, $B C=x$ metre
$\therefore A C=A B+B C=(20+x) m$
$\ln \triangle A C D$,
$\tan 30^{\circ}=\frac{\mathrm{CD}}{\mathrm{AC}} \Rightarrow \frac{1}{\sqrt{3}}=\frac{h}{20+x}$
$x=h 3-20$
Now, in $\triangle B C D$,
$\tan 60^{\circ}=\frac{C D}{B C} \Rightarrow \sqrt{3}=\frac{h}{x}$
$h=x \sqrt{3}$
$h=(h \sqrt{3}-20) \sqrt{3}$ [From eq. (i)]
$h=3 h-20 \sqrt{3}$
$2 h=20 \sqrt{3}$
$h=10 \sqrt{3}$
\therefore The height of the tower is $10 \sqrt{3}$ meter.

Hence, option C is correct.
9.

Given, $B C=100 \mathrm{~m}$,

Let, the height of each pole $=\mathrm{h}$ metre

And, $B E=x$ metre
$\therefore C E=(100-\mathrm{x}) \mathrm{m}$

In $\triangle C D E$,
$\tan 30^{\circ}=\frac{C D}{E C} \Rightarrow \frac{1}{\sqrt{3}}=\frac{h}{100-x}$
$x=100-h \sqrt{3}$

Now, in $\triangle A B E$,
$\tan 60^{\circ}=\frac{A B}{B E} \Rightarrow \sqrt{3}=\frac{h}{x}$
$h=x \sqrt{3}$
$h=(100-h \sqrt{3}) \sqrt{3} \quad$ [From eq. (i)]
$h=100 \sqrt{3}-3 h$
$4 h=100 \sqrt{3}$
$h=25 \sqrt{3}$
\therefore The height of each pole is $25 \sqrt{3}$ meter.
Hence, option A is correct.
10.

Given, $\mathrm{BC}=8 \sqrt{3} \mathrm{~m}$

In $\triangle A B C$,
$\tan 30^{\circ}=\frac{A B}{B C}$
$\frac{1}{\sqrt{3}}=\frac{A B}{8 \sqrt{3}}$
$A B=8 \mathrm{~m}$

Again,
$\sin 30^{\circ}=\frac{A B}{A C}$
$\frac{1}{2}=\frac{8}{A C}$

$$
\mathrm{AC}=16 \mathrm{~m}
$$

\therefore The height of the post $=A C+A B=16+8=24 \mathrm{~m}$.
Hence, option C is correct.

$-\dot{-1}$ - SmartKeeda

tug mis

TestZone

भारत की सबसे किफायती टेस्ट सीरीज़

12 Month Plan

2019-20 All Test Series
@ Just

₹ $499 /-$

300 + फुल लेन्थ टेस्ट

```
- श्रेष्ठ विश्लेषण
『 उत्कृष्ट विषय सामग्री
\(\checkmark\) बेजोड़ व्याख्या
```

