

Presents

TestZone

India's least priced Test Series platform

12 Month Plan

2019-20 All Test Series

₹499/-300+ Full Length Tests

- ☑ Brilliant Test Analysis
- **☑** Excellent Content
- **☑** Unmatched Explanations

JOIN NOW

Logarithms questions for CDSE and Railways

Directions: Study the following questions carefully and choose the right answer:

Logarithms quiz 1

1. The value of log 2 is 0.3010, then the number of digits in 5_{25} is:									
B. 8									
D. 18									
2. Provided $log_{27} x + log_3 x = 4$, then x is equal to:									
B. 17									
D. 35									
g ₆ 216) is:									
B. 3									
The Question Bank									
343) is:									
B. 3									
D. – 3									
B. 3									
D. 7									
then the number of digits in log 2 ⁶ is:									
B. 1.8									
D. 2.4									

7. Provided $log_5 25 + log_5 5 = x$, then what is the value of x?

A. 3

B. 5

C. 7

D. 8

8. If $log_{1296} x = -1/4$, then x is equal to:

A. 1/6

B. 3

C. 1/5

D. 4

9. Provided $log_{10} 2 = 0.3010$, then the value of $log_{10} 20$ is:

A. 1.301

B. 0.301

C. 0.699

D. 2.301

10. If $log_5 x = -2$. then, x is equal to:

A. 1/5

B. 1/25artkeeda

C. 5

D. 25 The Question Bank

Correct answers:

1	2	3	4	5	6	7	8	9	10
D	С	С	D	С	С	Α	Α	Α	В

Explanations:

1). $\log 5^{25} \Rightarrow 25 \log[\frac{10}{2}]$

⇒ 25
$$[\log 10 - \log 2]$$
 ⇒ 25 $(1 - 0.3010)$ ⇒ 25 × 0.699 ⇒ 17.5.

: Characteristic = 17. Hence, the number of digits in 5^{25} is 18.

Hence, option D is correct.

2).
$$\log_{27} x + \log_3 x = 4$$

$$\Rightarrow \frac{\log x}{\log 27} + \frac{\log x}{\log 3} = 4.$$
 Marked

$$\Rightarrow \frac{\log x}{3 \log 3} + \frac{\log x}{\log 3} = 4.$$

$$\Rightarrow \frac{\log x + 3 \log x}{3 \log 3} = 4 \iff 4 \log x = 12 \log 3$$

$$\Leftrightarrow$$
 log x = 3 log 3 \Leftrightarrow log x = log (3³) = log 27 \Leftrightarrow x = 27.

Hence, option C is correct.

3). Let
$$\log_6 216 = y$$
. Then, $6^x = 216 = 6^3 \Rightarrow x = 3$.

Let
$$log_2 (log_6 216) = y$$
.

Then $log_2 3 = y$.

or
$$2^y = 3 \Rightarrow y = \log_2 3$$

:
$$\log_2(\log_6 216) = \log_2 3$$
.

Hence, option C is correct.

4). Let
$$\log_7(\frac{1}{343}) = n$$
 Then, $7^n = \frac{1}{343}$

$$\Rightarrow$$
 7ⁿ = 7⁻³ \Rightarrow n = -3.

$$\log_7(\frac{1}{343}) = -3.$$

Hence, option D is correct.

5). Let $Log_2 32 = n$, then, $2^n = 2^5 \implies n = 5$.

Hence, option C is correct.

6).
$$\log 2^6 \Rightarrow 6 \log 2 = 6 \times 0.3010 \Rightarrow 1.806 = 1.8$$
.

Hence, option C is correct.

7).
$$\log_5 25 + \log_5 5 = x \Rightarrow \log_5 (25 \times 5) = x$$
.

$$\Rightarrow$$
 x = log₅ (125) = log₅ (5³) = 3 log₅ 5 \Rightarrow 3 × 1 = 3.

Hence, option A is correct.

8).
$$\log_{1296} x = -\frac{1}{4}$$
 then,

$$x = (1296)^{-1/4} \Rightarrow (6^4)^{(-1/4)} = \frac{1}{6}.$$

Hence, option A is correct.

9).
$$\log_{10} 20 \Rightarrow \log_{10}(\frac{100}{5}) = \log_{10} 100 - \log_{10} 5$$

$$\Rightarrow$$
 2 - log₁₀ 5

$$2 - \log_{10}(\frac{10}{2}) \Rightarrow 2 - (\log_{10} 10 - \log_{10} 2)$$

$$\Rightarrow$$
 2 - (1 - 0.3010) \Rightarrow 2 - 1 + 0.3010 = 1.3010.

$$\Rightarrow$$
 2 - (1 - 0.3010) \Rightarrow 2 - 1 + 0.3010 = 1.3010.

Hence, option A is correct.

10).
$$\log_5 x = -2 \implies x = 5^{-2} = \frac{1}{5^2} = \frac{1}{25}$$
.

Hence, B is correct.

The Question Bank

प्रस्तुत करते हैं

TestZone

भारत की सबसे किफायती टेस्ट सीरीज़

12 Month Plan

2019-20 All Test Series

@ Just

₹499/-

300 + फुल लेन्थ टेस्ट

- 🗹 श्रेष्ठ विश्लेषण

अभी जुड़ें