

Puzzle Test Questions for IBPS PO Pre, RRB Scale I Pre, SBI PO Pre, Syndicate Bank PO, Canara Bank PO, IBPS SO Pre, IBPS Clerk Mains and SBI Clerk Mains Exams.

Set No 143

Directions: Study the following information carefully and answer the questions given beside:

There are eight boxes from G to N which are placed one above the other. Each box has different number of chocolates among $58,90,60,23,67,45,89$ and 15 . The lowermost box is numbered as one and above as two and so on. All the above information is not necessarily in the same order.

The Box which has 45 chocolates and the Box which has 15 chocolates are placed adjacent to each other. Box G is placed above Box L. Box L position is odd number. Box M is placed two boxes above Box L. The number of chocolates in Box L is thrice the number of chocolates in Box N. Box M has 35 chocolates more than Box H . Box I is placed in topmost position. The difference of number of chocolates in Box I and Box K is 30 . Box J has 89 chocolates. Box J is placed four boxes below Box M . Box I has even numbered chocolates which is less than Box K. Box G is placed in even number position below sixth Box. Box G has 44 chocolates more than Box H. Box H is placed above Box L . Box K is placed immediately below Box I .

1. Which box has 45 chocolates?
A. The box placed at $1^{\text {st }}$ position
B. The box placed at $3^{\text {rd }}$ position
C. The box placed at $4^{\text {th }}$ position
D. The box placed at $5^{\text {th }}$ position
E. None of the above
2. Which box is placed at $2^{\text {nd }}$ position?.
A. Box K
B. Box J
C. BoxH
D. Box N
E. None of the above
3. What is the sum of chocolates together of Box K and Box J?
A. 189
B. 180
C. 179
D. 38
E. 60

4. Which of the following statements is definitely true?

A. Number of boxes placed between K and H is same as the number of boxes placed between G and N .
B. Two boxes are placed between Box H and Box G .
C. Sum of chocolates together of Box M and Box G is more than the sum of chocolates together of Box K and Box L.
D. Box I, Box M, Box G and Box N are placed at even number position
E. None of these

5. If all the boxes are in arranged in alphabetical order from top to bottom and then how many boxes retain their same position?

A. One
B. Two
C. None
D. Three
E. Four

Correct Answers:

$\mathbf{1}$	$\mathbf{2}$	$\mathbf{3}$	$\mathbf{4}$	$\mathbf{5}$
B	D	C	E	A

COMMON EXPLANATION:

References:

Box I is placed in topmost position.

Box K is placed immediately below Box I .

Box J is placed four boxes below Box M .
Box M is placed two boxes above Box L.

Box G is placed above Box L.

Box L position is odd number.
Box G is placed in even number position below sixth Box.

Box H is placed above Box L .

Box J has 89 chocolates.

Inferences:

From above statements,

Box I is placed in topmost position. Box K is placed immediately below Box I.
Box I is placed at $8^{\text {th }}$ position \& Box K is placed at $7^{\text {th }}$ position.

Box J is placed four boxes below Box M . Box M is placed two boxes above Box L . Box G is placed above Box L .
Box L position is odd number. Box G is placed in even number position below sixth Box. Box H is placed above Box L. Box J has 89 chocolates.

Here we get two possibilities:

Case 1: Box M is placed at $6^{\text {th }}$ position and then Box J comes in $2^{\text {nd }}$ position. Also Box L comes in $4^{\text {th }}$ position which is not possible i.e. Box L should be placed in odd number position. Hence this case becomes invalid and can be eliminated.

Case 2: Box M is placed at $5^{\text {th }}$ position and then Box J comes in $1^{\text {st }}$ position. Then, Box L can be placed at $3^{\text {rd }}$ position. Also Box G can be placed at $4^{\text {th }}$ position (Given, Box G is placed at even number position above Box L). Finally Box H is placed at $6^{\text {th }}$ position (Given, Box H is placed above Box L). At last remaining Box N is placed at 2nd position. Box J has 89 chocolates. All conditions satisfied.

By using all above information, we get the initial table as shown,

Case: 1 [Eliminated]		
Box L should be in Odd position		
Box Position	Boxes	Number of Chocolates
8	l	
7	K	
6	M	
5		
4	L	
3		
2	J	
1		

Case:2		
Box Position	Boxes	Number of Chocolates
8	I	
7	K	
6	H	
5	M	
4	G	
3	L	
2	N	
1	J	89

References:

The Box which has 45 chocolates and the Box which has 15 chocolates are placed adjacent to each other.
The number of chocolates in $B o x L$ is thrice the number of chocolates in $\operatorname{Box} N$. Box M has 35 chocolates more than Box H .

Box G has 44 chocolates more than Box H .

The difference of number of chocolates in Box I and Box K is 30 .

Box I has even numbered chocolates which is less than Box K.

Inferences:

From above statements,

Among given number of chocolates $58,90,60,23,67,45,89$ and 15.
The Box which has 45 chocolates and the Box which has 15 chocolates are placed adjacent to each other. The number of chocolates in Box L is thrice the number of chocolates in Box N.

Given, Box L = $3 \times$ Box N
Among given numbers only 15 and 45 satisfies this condition
That is Box $\mathrm{N}=15$ and then

Box L $=3 \times 15=45$

So as per condition, Box N and Box L have 15 and 45 chocolates respectively and it is placed adjacent each other.

Box M has 35 chocolates more than Box H. Box G has 44 chocolates more than Box H.
Given, Box M = 35 + Box H

Box $G=44+$ Box H
Among given numbers only 23 satisfies this condition

That is $\mathrm{Box} \mathrm{H}=23$ and then
Box $M=35+23=58$

Box $G=44+23=67$

Therefore Box H, Box M and Box G have 23, 58 and 67 chocolates respectively.
The difference of number of chocolates in Box I and Box K is 30 . Box I has even numbered chocolates which is less than Box K.

Remaining numbers left are 60 and 90.

Given, Box K Box K.

Therefore Box I and Box K have 60 and 90 chocolates respectively
(Difference $\mathrm{K}-\mathrm{I}=90-60=30$).

All conditions gets satisfied and we get the completed table,

Case:2		
Box Position	Boxes	Number of Chocolates
8	I	60
7	K	90
6	H	23
5	M	58
4	G	67
3	L	45
2	N	15
1	J	89

Join us on Telegram for more PDFs Click here

Answers :

1. The following common explanation, we get "Box L-45 chocolates-3rd position".

Hence, option B is correct.
2. The following common explanation, we get "Box N-15 chocolates-2nd position".

Hence, option D is correct.
3. The following common explanation, we get "179 i.e. Box K=90, Box J=89".

Sum $=90+89=179$

Hence, option C is correct.
4. The following common explanation, we get "None of these".

All statements are false.

Hence, option E is correct.
5. The following common explanation, we get "One i.e. Only Box L retain the 3rd position".

Case :2			
Box Position	Boxes	Number of Chocolates	Alphabetical order
8	I	60	G
7	K	90	H
6	H	23	I
5	M	58	J
4	G	67	K
3	L	45	L
2	N	15	M
1	J	89	N

Hence, option A is correct.

Join us on Telegram for more PDFs
 Click here

Presents

TestZone

India's least priced Test Series platform

ALL BANK EXAMS

2019-20 Test Series

@ Just

₹ 499/-

300+ Full Length Tests

\checkmark Brilliant Test Analysis
\checkmark Excellent Content
\checkmark Unmatched Explanations

