-1 SmartKeeda

 Presents

 Presents}

TestZone

India's least priced Test Series platform

12 Month Plan
 2017-18 All Test Series

@ Just

₹ 399/-

300+ Full Length Tests

\checkmark Brilliant Test Analysis
\boxtimes Excellent Content
\checkmark Unmatched Explanations

Problems on trains Questions for CDS, CLAT, Bank \& SSC Exams.

Problems on Trains Quiz 3

Directions: Kindly study the following Questions carefully and choose the right answer:

1. Two trains 165 m and 135 m long run at the speed of $70 \mathrm{~km} / \mathrm{hr}$ and $38 \mathrm{~km} / \mathrm{hr}$ respectively in opposite directions on parallel tracks. The time (in seconds) which they take to cross each other is:
A. 4 sec
B. 5 sec
C. 10 sec
D. 13 sec
2. Two trains is moving in opposite directions at 70 kmph and at 80 kmph . Their lengths are 1.3 km and 0.7 km respectively. The time taken by the slower train to cross the faster train in seconds is:
A. 24 sec
B. 48 sec
C. 76 sec
D. 102 sec
3. A train 75 m long passes a person, running at 6 kmph in the same direction in which the train is going in 15 seconds. The speed of the train is:
A. 10 kmph
B. 14 kmph
C. 24 kmph
D. 35 kmph
4. A train 105 m long passes a person, running at 2 kmph in the direction opposite to that of the train, in 2 seconds. The speed of the train is:
A. 100 kmph
B. 123 kmph
C. 187 kmph
D. 144 kmph
5. A train 150 metres long crosses a milestone in 15 seconds and crosses another train of the same length travelling in the opposite direction in 12 seconds. The speed of the second train in km/hr is
A. $52 \mathrm{~km} / \mathrm{hr}$
B. $56 \mathrm{~km} / \mathrm{hr}$
C. $54 \mathrm{~km} / \mathrm{hr}$
D. $58 \mathrm{~km} / \mathrm{hr}$
6. Two trains, A and B start from stations X and Y towards Y and X respectively. After passing each other, They take 4 hours 48 minutes and 3 hours 20 minutes to reach Y and X respectively. If train A is moving at $45 \mathrm{~km} / \mathrm{hr}$., then the speed of the train B is
A. $60 \mathrm{~km} / \mathrm{hr}$
B. $64.8 \mathrm{~km} / \mathrm{hr}$
C. $54 \mathrm{~km} / \mathrm{hr}$
D. $37.5 \mathrm{~km} / \mathrm{hr}$
7. A train covers a distance between station A and station B in 45 minutes. If the speed of the train is reduced by 5 km per hour, then the same distance is covered in 48 minutes. The distance between stations A and B is
A. 60 km
B. 64 km
C. 80 km
D. 55 km
8. A train 300 m long is running at a speed of 25 metres per second, it will cross a bridge 200 metres long in
A. 5 seconds
B. 10 seconds
C. 20 seconds
D. 25 seconds
9. A train passes by a lamp post on a platform in 7 sec. and passes by the platform completely in 28 sec . if the length of the platform is 390 m . then length of the train (in metres) is
A. 120
B. 130
C. 140
D. 150
10. Two trains move from station A and station B towards each other at the speed of 50 km / h and $60 \mathrm{~km} / \mathrm{h}$. At the meeting point, the driver of the second train felt that the train has covered 120 km more. What is the distance between A and B ?
A. 1320 km
B. 1100 km
C. 1200 km
D. 960 km

Correct Answers:

$\mathbf{1}$	$\mathbf{2}$	$\mathbf{3}$	$\mathbf{4}$	$\mathbf{5}$	$\mathbf{6}$	$\mathbf{7}$	$\mathbf{8}$	$\mathbf{9}$	$\mathbf{1 0}$
C	B	C	C	C	C	A	C	B	A

Explanations:

1. Relative speed $=(70+38)=108 \mathrm{~km} / \mathrm{hr}$ \{As the trains are moving in opposite directions)
$\Rightarrow\left(108 \times \frac{5}{18}\right)=30 \mathrm{~m} / \mathrm{sec}$.
Distance covered in crossing each other $=(165+135)=300 \mathrm{~m}$
Reqd. time $=\left(300 \times \frac{1}{30}\right) \mathrm{sec} \Rightarrow \frac{30}{3} \mathrm{sec}=10 \mathrm{sec}$.
Hence, option C is correct.
2. Relative speed $=(70+80)=150 \mathrm{~km} / \mathrm{hr}$.
$\Rightarrow\left(150 \times \frac{5}{18}\right) \mathrm{m} / \mathrm{sec} \Rightarrow\left(\frac{125}{3}\right) \mathrm{m} / \mathrm{sec}$.

Distance covered $=(1.30+0.7) \mathrm{km}=2 \mathrm{~km}=2000 \mathrm{~m}$
Reqd. time $=\left(\frac{3}{125} \times 2000\right) \mathrm{sec}=48 \mathrm{sec}$
Hence, option B is correct.
3.

Speed of the train relative to Person $=\left(\frac{75}{15}\right) \mathrm{m} / \mathrm{sec}=5 \mathrm{~m} / \mathrm{sec}$
$\Rightarrow\left(5 \times \frac{18}{5}\right) \mathrm{km} / \mathrm{hr}=18 \mathrm{~km} / \mathrm{hr}$.
Let the speed of the train be x kmph. then, relative speed $=(x-6) \mathrm{kmph}$
So, $(x-6)=18 \Rightarrow x=24 \mathrm{kmph}$
Hence, option C is correct.
4. Speed of the train relative to person
$=\left(\frac{105}{2}\right) \mathrm{m} / \mathrm{sec} \Rightarrow\left(\frac{105}{2} \times \frac{18}{5}\right)=189 \mathrm{~km} / \mathrm{hr}$.
Let speed of the train be $x \mathrm{kmph}$.
then, relative speed $\Rightarrow(x+2)=189$
$\Rightarrow \mathrm{x}=187 \mathrm{kmph}$.
Hence, option C is correct.

5.

Speed of the first train $=\frac{150}{15}=10 \mathrm{~m} / \mathrm{sec}$
Let the speed of the second train be $\mathrm{xm} / \mathrm{sec}$
Relative speed $=(10+x) \mathrm{m} / \mathrm{sec}$
Length of train $1+$ length of train $2=150+150=300 \mathrm{mtr}$
In the second scenario equation will be like $\frac{300}{10+x}=12$
or, $300=120+12 x$
or, $x=\frac{180}{12}=15 \mathrm{~m} / \mathrm{sec}$
\therefore speed of the second train $=15 \times \frac{18}{5}=54 \mathrm{~km} / \mathrm{hr}$
Hence, option C is correct.
6. To solve this question, we can apply a short trick approach

If two trains A and B start from P and Q towards Q and P, respectively and after passing each other they take T_{1} and T_{2} time to reach Q and P, respectively and speed of train A is given as a, then
Speed of train B $=a \sqrt{\frac{T_{1}}{T_{2}}}$
By the short trick approach, we get
Speed of train $=45 \times \sqrt{\frac{4 \text { hrs } 48 \text { min }}{3 \text { hrs } 20 \text { min. }}}$.
$=45 \times \sqrt{\frac{4+\frac{48}{60}}{3+\frac{20}{60}}}$
$=45 \times \sqrt{\frac{4+\frac{4}{5}}{3+\frac{1}{3}}}$
$=45 \times \sqrt{\frac{24 \times 3}{5 \times 10}}=45 \times \frac{6}{5}=54 \mathrm{~km} / \mathrm{hr}$.
Hence, option C is correct.
7. To solve this question, we can apply a short trick approach

Distance between 2 stations $=\left(\frac{X \times T_{1} \times T_{2}}{T_{2}-T_{1}}\right)$
Reducing speed $X=5 \mathrm{~km} / \mathrm{hr}=\frac{5}{60} \mathrm{~km} / \mathrm{min}$.
Time duration before reducing the speed $\mathrm{T}_{1}=45 \mathrm{~min}$

Time duration after reducing the speed $\mathrm{T}_{2}=48 \mathrm{~min}$
Distance between 2 stations $=\left(\frac{X \times T_{1} \times T_{2}}{T_{2}-T_{1}}\right)$
$=\left[\frac{5 \times 45 \times 48}{48-45}\right] \frac{1}{60}$
After solving the above equation, we get
Distance $=60 \mathrm{~km}$.
Hence, option A is correct.
8. To solve this question, we can apply a short trick approach;
"When a train passes a platform or crosses a bridge it should travel the length equal to the sum of the length of train and platform or bridge both"

Reqd. time $=\frac{\text { Length of train }+ \text { Length of Bridge }}{\text { Speed of train }}$

Given

Speed of train $=25 \mathrm{~m} / \mathrm{sec}$
Length of train $=300 \mathrm{~m}$, Length of bridge $=200 \mathrm{~m}$
Crossing time of bridge $=x$
By the short trick approach, we get
$x=\frac{300+200}{25} \Rightarrow x=\frac{500}{25}=20$ seconds.
Hence, option C is correct.
9. To solve this question, we can apply a short trick approach;

Length of train
$=\frac{\text { Length of the platform }}{\text { Difference in time }} \times$ (Time taken to cross a lamp post)
By the short trick approach, we get
$=\frac{390}{28-7} \times(7) \Rightarrow \frac{390}{21} \times 7=\frac{390}{3}=130 \mathrm{~m}$.
Hence, option B is correct..
10. To solve this question, we can apply a short trick approach;

Distance $=$ Difference in distance $\times \frac{\text { Sum of speeds }}{\text { Difference in speeds }}$
Given,
Speed of $1^{\text {st }}$ train $=50 \mathrm{~km} / \mathrm{hr}$; Speed of $2^{\text {nd }}$ train $=60 \mathrm{~km} / \mathrm{hr}$
Difference in distance $=120 \mathrm{~km}$
By the short trick approach, we get
Distance $=120 \times \frac{(50+60)}{(60-50)}=120 \times \frac{110}{10}=1320 \mathrm{~km}$.
Hence, option A is correct.

$\sim^{\prime}-$ SmartKeeda The Question Bank प्रस्तुत करते हैं

 TestZone

 TestZone भारत की सबसे किफायती टेस्ट सीरीज़
 ■ (3)

12 Month Plan

2017-18 All Test Series

@ Just

₹ 399/-
 300 + फुल लेन्थ टेस्ट

『 श्रेष्ठ विश्लेषण
『 उत्कृष्ट विषय सामग्री
\checkmark बेजोड़ व्याख्या

