

Mixed Maths Questions for SSC 10 + 2 and CGL Tier-I exams

SSC Maths Quiz 4

Directions: Read the following questions carefully and choose the right answer.

1. If $x^{4}+\frac{1}{x^{4}}=322$, and $x>1$ then the value of $x^{3}-\frac{1}{x^{3}}$ is
A. 76
B. 54
C. 66
D. 36
2. Find the value of $\sin ^{2} 10+\sin ^{2} 20+\sin ^{2} 30+\ldots \ldots+\sin ^{2} 80$.
A. 2
B. 3
C. 1
D. 4
3. In the given figure, triangle $A B C$ is an isosceles triangle such that $A B=$ $B C$. Find x, y and z if angle CDE is 120°.
A. $x=60^{\circ}, y=60^{\circ}, z=60^{\circ}$
B. $x=30^{\circ}, y=40^{\circ}, z=60^{\circ}$
C. $x=40^{\circ}, y=60^{\circ}, z=60^{\circ}$
D. $x=50^{\circ}, y=40^{\circ}, z=60^{\circ}$
4. Find the value of $\frac{16}{\sqrt{3}}\left(\cos 50^{\circ} \cos 10^{\circ} \cos 110^{\circ} \cos 60^{\circ}\right)$

A. 1
B. 2
C. -1
D. -2
5. If the rate of income tax increases by $\mathbf{1 8 \%}$, net income decreases by $\mathbf{2 \%}$. What was the rate of income tax?
A. 10
B. 20
C. 15
D. 12
6. If $x+y+z=6 \sqrt{3}$ and $x^{2}+y^{2}+z^{2}=36$. Find $x: y$: z.
A. $1: 1: 2$
B. $2: 3: 1$
C. $1: 1: 1$
D. $1: 2: 3$
7. The speed of boat is $10 \mathrm{~km} / \mathrm{hr}$ in still water and speed of current is $4 \mathrm{~km} / \mathrm{hr}$. A man covered 12 km upstream, took some rest and then covered 14 km downstream. Find the period of time for which he took rest if he took 4 hrs to cover his complete journey.
A. 0.5 hr
B. 1 hr
C. 1.5 hr
D. 1.25 hr
8. If R and r are respectively the circumradius and in radius of triangle having sides $40 \mathrm{~cm}, 41 \mathrm{~cm}$ and 9 cm , then find the value of $2(R+r)$.
A. 40
B. 49
C. 45
D. 44
9. In the given figure, the side $B C$ of $\triangle A B C$ is produced on both side, then $\angle 1+\angle 2$ is equal to
A. $\angle A+\angle 180^{\circ}$
B. $180^{\circ}-\angle \mathrm{A}$
C. $2 \angle A+180^{\circ}$
D. $\angle \mathrm{A}+90^{\circ}$
10. Find the value of $\cos ^{2} \theta\left(\sqrt{\frac{1+\sin \theta}{1-\sin \theta}}+\sqrt{\frac{1-\sin \theta}{1+\sin \theta}}\right)$
A. $\cos \theta$
B. $\frac{\cos \theta}{2}$
C. $2 \cos \theta$
D. $\sqrt{2} \cos \theta$

Correct answers:

1	2	3	4	5	6	7	8	9	10
A	D	A	C	A	C	B	B	A	C

For more PDFs join us on Telegram

Explanation:

1. $\mathrm{x}^{4}+\frac{1}{\mathrm{x}^{4}}=322[\mathrm{x}>1]$ given

We know that, $\left[(a+b)^{2}=a^{2}+b^{2}+2 a b\right]$ Or, $\left[(a+b)^{2}-2 a b=a^{2}+b^{2}\right]$
So, $\left(x^{2}+\frac{1}{x^{2}}\right)^{2}-2 \times x^{2} \times \frac{1}{x^{2}}$
$=x^{4}+\frac{1}{x^{4}}$
Or, $\left(x^{2}+\frac{1}{x^{2}}\right)^{2}=322+2$
$\left(x^{2}+\frac{1}{x^{2}}\right)^{2}= \pm 18$
Also, $\left(x^{2}-\frac{1}{x^{2}}\right)^{2}+2 \times x \times \frac{1}{x}$
$=x^{2}+\frac{1}{x^{2}}$
$\left(x^{2}-\frac{1}{x^{2}}\right)^{2}+2=18$
$\left[\because(a-b)^{2}+2 a b=a^{2}+b^{2}\right]$
$\left(x-\frac{1}{x}\right)= \pm 4$

Now, Cubbing both sides, we get
$\mathrm{x}^{3}-\frac{1}{\mathrm{x}^{3}}-3 \times \mathrm{x} \times \frac{1}{\mathrm{x}}\left(\mathrm{x}-\frac{1}{\mathrm{x}}\right)=64$
Or, $x^{3}-\frac{1}{x^{3}}-3(4)=64$
$x^{3}-\underline{1}=12+64$

$$
x^{3}
$$

$\left(x^{3}-\frac{1}{x^{3}}\right)=76$

Hence, option A is correct.
2. We can rewrite above equation as
$\sin ^{2} 10+\sin ^{2} 80+\sin ^{2} 20+\sin ^{2} 70+\sin ^{2} 30+\sin ^{2} 60+\sin ^{2} 40+\sin ^{2} 50 \ldots .$. equation (A)

We know that $\sin ^{2} x+\sin ^{2}(90-x)=1$

Therefore equation A becomes
$1+1+1+1=4$
Hence, option D is correct.
3. Mehtod I:

Since quadrilateral CDEF is Cyclic quadrilateral, therefore
$\angle \mathrm{CDE}+\angle \mathrm{CFE}=180^{\circ}$
Therefore,
$\angle C F E=180^{\circ}-120^{\circ}=60^{\circ}$
We know that
Angles formed from two points on the same arc are equal .
Therefore
$x=\angle C A E=60^{\circ}$
Since $A B=B C$

Thus $x=\angle A C B=60^{\circ}$
By angle sum property of triangle $A B C$, we have
$x+x+\angle A B C=180^{\circ}$
$\angle A B C=180-2 x$
$\angle A B C=180-120=60^{\circ}$
$\angle A B C=y=60^{\circ}$ as vertically opposite angles are same.
Using angle sum property in \triangle FBE ,we get
$60^{\circ}+60^{\circ}+z=180^{\circ}$

Thus $z=60^{\circ}$

Method II:

In this question, CDEF will be a cyclic quadrilateral.
Therefore, the sum of the opposite angle i.e. angle $C D E=$ angle $C F E=180^{\circ}$
$120^{\circ}+\angle C F E=180^{\circ}$
$<C F E=180-120=60^{\circ}$
Now, if we take CE a chord then we know that the angle made by the same chord on any point of the circumference is equal therefore
$\angle C F E=\angle C A E=60^{\circ}=X-----$ (i)
Again, according to the question, $\mathrm{AB}=\mathrm{BC}$ therefore $\mathrm{x}=\angle \mathrm{ACB}=60^{\circ}$
In triangle $\mathrm{ABC},<\mathrm{X}+<\mathrm{ACB}+<\mathrm{ABC}=180^{\wedge} 0$
$60+60+<A B C=180$
$\angle A B C=180-120=60^{\circ}----$ (ii)
Now, AE and CF intersect each other at B

Therefore, $\angle \mathrm{ABC}=<\mathrm{FBE}=\mathrm{Y}=[60]^{\wedge} 0----$ (iii) (from the equation $\mathrm{I},<\mathrm{ABC}=60^{\circ}$)
Now in the triangle FBE, $\angle F B E+\angle B E F+\angle B F E=60+60+Z=180$
By solving, $z=60^{\circ}$

Therefore, $x=y=z=60^{\circ}$

Hence, option A is correct answer.
4. We have $\operatorname{Cos} x \operatorname{Cos}(60-x) \operatorname{Cos}(60+x)=\operatorname{Cos} x(\operatorname{Cos} x \operatorname{Cos} 60+\operatorname{Sin} x$ $\left.\operatorname{Sin} 60^{\circ}\right)\left(\operatorname{Cos} x \operatorname{Cos} 60^{\circ}-\operatorname{Sin} x \operatorname{Sin} 60^{\circ}\right)$
$=\operatorname{Cos} x\left(\cos ^{2} x \operatorname{Cos}^{2} 60^{\circ}-\operatorname{Sin}^{2} x \operatorname{Sin}^{2} 60^{\circ}\right)$
$=\operatorname{Cos} x\left(\frac{1}{4} \cos ^{2}-\frac{3}{4} \sin ^{2} x\right)$
$=\frac{1}{4}\left(\operatorname{Cos}^{3} x-3 \operatorname{Cos} x\left(1-\operatorname{Cos}^{2} x\right)\right)$
$=\frac{1}{4}\left(4 \operatorname{Cos}^{3} x-3 \operatorname{Cos} x\right)$
$=\frac{1}{4} \operatorname{Cos} 3 x$

Thus,
$\cos x^{\circ} \cos (60-x)^{\circ} \cos (60+x)=\frac{1}{4} \cos (3 x)$
Therefore,
$\operatorname{Cos} 50^{\circ} \operatorname{Cos} 10^{\circ} \operatorname{Cos} 110^{\circ}=\frac{1}{4} \operatorname{Cos} 150^{\circ}$
$=\frac{1}{4}(-\sqrt{ } 3 / 2)=-\frac{\sqrt{ } 3}{8} \quad \ldots$ eq A
Also $\cos 60^{\circ}=\frac{1}{2} \quad$... eqB

Put values of eq.A and Eq.B in
$\frac{16}{\sqrt{3}}\left(\operatorname{Cos} 50^{\circ} \operatorname{Cos} 10 \operatorname{Cos} 110^{\circ} \operatorname{Cos} 60^{\circ}\right)$, we get
$=\frac{16}{\sqrt{3}} \times\left(-\frac{\sqrt{ } 3}{8}\right) \times \frac{1}{2}$
$=-1$
Option C is hence the correct answer.
5. 18% of income tax $=2 \%$ of net income
$\frac{\text { Income tax }}{\text { Net income }}=\frac{2}{18}=\frac{1}{9}$

Let the income tax be x and Net income be 9 x

Therefore total income $=x+9 x=10 x$

Rate of Income tax $=\frac{x}{10 x} \times 100 \%=10 \%$

Hence, option A is correct.
6. Sol We have $(a+b+c)^{2}=a^{2}+b^{2}+c^{2}+2 a b+2 b c+2 c a$

Therefore $(x+y+z)^{2}=(6 \sqrt{ } 3)^{2}$
$=x^{2}+y^{2}+z^{2}+2 x y+2 y z+2 z x=108$
$=36+2(x y+y x+z x)=108$
$=x y+y z+z x=36$......equation A
Comparing equation A with $\mathrm{x}^{2}+\mathrm{y}^{2}+\mathrm{z}^{2}=36$
We get $x^{2}=x y$ or $x=y$

Similarly we get $x=y=z$

Therefore $\mathrm{x}: \mathrm{y}: \mathrm{z}=1: 1: 1$
Thus option C is correct answer.
7. We know that

Downstream speed $=$ Speed of boat in still water + Speed of current

Upstream speed $=$ Speed of boat in still water - Speed of current.

Downstream speed $=10+4=14 \mathrm{~km} / \mathrm{hr}$

Upstream speed $=10-4=6 \mathrm{~km} / \mathrm{hr}$

Time taken to cover 12 km upstream $=12 / 6=2 \mathrm{hr}$

Time taken to cover 14 km downstream $=14 / 14=1$

Time for which he took rest $=4-3=1 \mathrm{hr}$

Hence, option B is correct.
8. We have,
$41^{2}=1681$
$40^{2}=1600$
$9^{2}=81$

Since, $41^{2}=40^{2}+9^{2}$

Therefore, Given triangle is a right angle triangle whose hypotenuse is 41 , and others two are perpendicular and base.

Sum of base and perpendicular $=49 \mathrm{~cm}$

We know In right angle triangle,
Inradius $=\frac{\mathrm{P}+\mathrm{B}-\mathrm{H}}{2}$
$=\frac{49-41}{2}=\frac{8}{2}=4 \mathrm{~cm}$

Also circumradius in right angle triangle $=$
$\frac{\mathrm{H}}{2}=\frac{41}{2} \mathrm{~cm}$
$R+r=4+\frac{41}{2}=\frac{49}{2}$
$2(R+r)=49 \mathrm{~cm}$

Hence option B is correct.
9. We know
$\angle A+\angle 5+\angle 6=180^{\circ}$
Also, $\angle 2=\angle A+\angle 6$
and $\angle 1=\angle A+\angle 5$

[Exterior angle is equal to sum of two opposite angels of triangle]
$\angle 1+\angle 2=2 \angle A+\angle 5+\angle 6$
$=\angle \mathrm{A}+180^{\circ}$

Hence, option A is correct.
10. $\cos ^{2} \theta\left(\sqrt{\frac{(1+\sin \theta)(1+\sin \theta)}{(1-\sin \theta)(1+\sin \theta)}}+\sqrt{\frac{(1-\sin \theta)(1-\sin \theta)}{(1+\sin \theta)(1-\sin \theta)}}\right)$

$$
\begin{aligned}
& \Rightarrow \cos ^{2} \theta\left(\sqrt{\frac{(1+\sin \theta)^{2}}{\left(1-\sin ^{2} \theta\right)}}+\sqrt{\frac{(1-\sin \theta)^{2}}{(1-\sin \theta)^{2}}}\right) \\
& \Rightarrow \cos ^{2} \theta\left(\sqrt{\frac{(1+\sin \theta)^{2}}{\cos ^{2} \theta}}+\sqrt{\frac{(1-\sin \theta)^{2}}{\cos ^{2} \theta}}\right) \\
& \Rightarrow \cos ^{2} \theta\left(\frac{1+\sin \theta}{\cos \theta}+\frac{1-\sin \theta}{\cos \theta}\right) \\
& \Rightarrow \cos ^{2} \theta\left(\frac{1+\sin \theta+1-\sin \theta}{\cos \theta}\right)=\frac{2 \cos ^{2} \theta}{\cos \theta}=2 \cos \theta
\end{aligned}
$$

Hence, option C is correct.

\checkmark EXCELLENT CONTENT
BRILLIANT TEST ANALYSIS
FREE MOCK TEST Attempt Now
\checkmark UNMATCHED EXPLANATION

For more PDFs join us on Telegram

CLICK HERE

Presents

TestZone

India's least priced Test Series platform

ALL BANK EXAMS

2019-20 Test Series
@ Just

₹ 499 /-

300+ Full Length Tests
\boxtimes Brilliant Test Analysis
\boxtimes Excellent Content
\boxtimes Unmatched Explanations

