-1 SmartKeeda

 Presents

 Presents}

TestZone

India's least priced Test Series platform

12 Month Plan
 2017-18 All Test Series

@ Just

₹ 399/-

300+ Full Length Tests

\checkmark Brilliant Test Analysis
\boxtimes Excellent Content
\checkmark Unmatched Explanations

Simple Interest Questions for CDS, CLAT and SSC Exams.

Simple Interest Quiz 4
Directions: Kindly study the following Questions carefully and choose the right answer:

1. S.I for a sum of 1550 for 2 years rupees 20 more than the S.I for 1450 for the same duration. Find the rate of interest.
A. 5\%
B. 10%
C. 15\%
D. 24%
2. In a certain time, a sum becomes 3 times at the rate of 5% per annum. At what rate of interest the same sum becomes 6 times in same duration?
A. 7%
B. 9\%
C. 12.5%
D. 17%
3. At what rate per cent per annum calculated in simple interest will a sum of money double in 10 year?
A. 10\%
B. 12%
C. 12.5\%
D. 13.5%
4. A sum of money lent on simple interest triples itself in 15 years and 6 months. In how many years will it be doubled?
A. 6 yr 3 months
B. 7 yr 9 months
C. 8 yr 3 months
D. 9 yr 6 months
5. A sum of money becomes 3 times in 5 year. In how many year will be the same sum become 6 times at the same rate of simple interest?
A. 15 year
B. 12.5 year
C. 10 year
D. 7.5 year
6. The principal on which a simple interest of Rs. 55 will be obtained after 9 months at the rate of $11 / 3 \%$ per annum is
A. Rs. 1000
B. Rs. 1500
C. Rs. 2000
D. Rs. 2500
7. At what rate per cent per annum simple interest will a sum of money triple itself in 25 year?
A. 8%
B. 9%
C. 10%
D. 12%
8. If x, y, z are three such sums of money that y is the simple interest on x and z is the simple interest on y for the same time and at the same rate of interest, then we have
A. $z^{2}=x y$
B. $x y z=1$
C. $x^{2}=y z$
D. $y^{2}=z x$
9. The difference between simple interest and the true discount on Rs. 2400 due 4 years hence at 5% per annum simple interest is
A. Rs. 30
B. Rs. 80
C. Rs. 50
D. Rs. 70
10. A man buys a TV prices at Rs. 16000 . He pays Rs. 4000 at once and the rest after 15 months on which he is charged a simple interest at the rate of 12% per year. The total amount he pays for the TV is
A. Rs. 18,200
B. Rs. 17,800
C. Rs. 17,200
D. Rs. 16,800

Correct Answers:

$\mathbf{1}$	$\mathbf{2}$	$\mathbf{3}$	$\mathbf{4}$	$\mathbf{5}$	$\mathbf{6}$	$\mathbf{7}$	$\mathbf{8}$	$\mathbf{9}$	$\mathbf{1 0}$
B	C	A	B	B	C	A	D	B	B

Explanations:

1. According to question, we get
S.I. on $1550-$ S.I. on $1450=20$
$\frac{1550 \times R \times 2}{100}-\frac{1450 \times R \times 2}{100}=20$
$\frac{100 \times R \times 2}{100}=20$
$R=10 \%$.
Hence, option B is correct.
2. To solve this question we can apply a short trick approach,

Net percent rate $\left(r_{2}\right)=\left(\frac{y-1}{x-1}\right) \times r_{1}$

Where:

\mathbf{x} is the no. of times the sum becomes of itself in the 1st scenario $=\mathbf{3}$
\mathbf{y} is the no. of times the sum becomes of itself in the 1st scenario $=\mathbf{6}$
r_{1} is the rate of interest in the 1st scenario = 5\%
r_{2} is the rate of interest in the 2 nd scenario = ?
By the short trick approach, we get
Required rate percent $\left(r_{2}\right)=\left(\frac{6-1}{3-1}\right) \times 5=\frac{25}{2}=12.5 \%$

Detailed Method:

Amount $=P+S . I$.
$3 P=P+S . I ; \quad S . I=2 P$
i.e. if Amount $=6 P$ then $S . I=5 P$
S.I $=\frac{P \times R \times T}{100}$
$2 P=\frac{P \times R \times T}{100}$
$T=\frac{200}{5}$
$5 \mathrm{P}=\frac{\mathrm{P} \times \mathrm{R} \times 200}{100 \times 5}$
$R=\frac{25}{2} \%=12.5 \%$
Hence, option C is correct.
3. Let principal $=x$, then amount $=2 x$
$\therefore \mathrm{SI}=\mathrm{A}-\mathrm{P}=2 \mathrm{x}-\mathrm{x}=\mathrm{x}$
$\because \mathrm{SI}=\frac{\mathrm{P} \times \mathrm{R} \times \mathrm{T}}{100} \Rightarrow \mathrm{x}=\frac{\mathrm{x} \times \mathrm{r} \times 10}{100} \Rightarrow \quad \therefore r=10 \%$.

Hence, option A is correct.
4. To solve this question we can apply a short trick approach,

Required time $\left(t_{2}\right)=\left(\frac{x-1}{y-1}\right) \times t_{1}$
Where \mathbf{x} is the no. of times the sum becomes of itself in the 2 nd scenario $=2$
\mathbf{y} is the no. of times the sum becomes of itself in the 1st scenario $=3$
\mathbf{t} is the time taken in the 1 st scenario $=15 \mathrm{yr} 6$ months $=\frac{31}{2} \mathrm{yr}$
\mathbf{t}_{2} is the time taken in the 1st scenario = ?
By the short trick approach, we get

Required time $\left(\mathrm{t}_{2}\right)=\left(\frac{2-1}{3-1}\right) \times \frac{31}{2}=\frac{31}{4}=7 \mathrm{yr} 9$ months.

Detailed Method:

Let initial amount be Rs. P, then $A=R s .3 P$ and $T=15 \mathrm{yr}$ and 6 months $=\frac{31}{2} \mathrm{yr}$
$\mathrm{SI}=\mathrm{A}-\mathrm{P}=\mathrm{Rs} .2 \mathrm{P}$
$\Rightarrow P \times \frac{31}{2} \times \frac{r}{100}=2 P \Rightarrow r=\frac{2 \times 2 \times 100}{31}=\frac{400}{31}$

Let amount doubled in t_{1} year.
$\Rightarrow t_{1}=\frac{S I \times 100}{P \times r} \Rightarrow t_{1}=\frac{P \times 100 \times 31}{P \times 400}=\frac{31}{4}=7 y r$ and 9 months.

Hence, option B is correct.
5. To solve this question we can apply a short trick approach,

Required time $\left(t_{2}\right)=\left[\left(\frac{y-1}{x-1}\right) \times t_{1}\right]$ years.
Where:
\mathbf{x} is the no. of times the sum becomes of itself in the 1st scenario $=\mathbf{3}$
\mathbf{y} is the no. of times the sum becomes of itself in the 2 nd scenario $=\mathbf{6}$
\mathbf{t}_{1} is the time taken in the 1st scenario $=\mathbf{5} \mathbf{~ y r}$
t_{2} is the time taken in the 2nd scenario $=$?
By the short trick approach, we get
Required time $\left(\mathrm{t}_{2}\right)=\left[\left(\frac{6-1}{3-1}\right) \times 5\right]=\frac{25}{2}=12.5 \mathrm{yrs}$.
Hence, option B is correct.
6. Let P be the principal.

Given that, $\mathrm{SI}=$ Rs. 55,
time $(\mathrm{t})=9$ months $=\frac{9}{12} \mathrm{yr}$ and rate $(\mathrm{r})=\frac{11}{3} \%$
$S I=\frac{P \times r \times t}{100}$
$\Rightarrow \mathrm{P}=\frac{\mathrm{SI} \times 100}{\mathrm{r} \times \mathrm{t}}=\frac{55 \times 100}{11 \times 9} \times 3 \times 12$
$=5 \times 100 \times 4=2000$
\therefore Principal (P) = Rs. 2000.
Hence, option C is correct.
7. Let principal amount $=P$

As amount $=3 P, t=25$ year
$\mathrm{SI}=3 \mathrm{P}-\mathrm{P}=2 \mathrm{P}$
\because Rate $=\frac{100 \times \text { SI }}{P \times 25}=\frac{100 \times 2 \mathrm{P}}{\mathrm{P} \times 25}=8 \%$.

Hence, option A is correct.
8.
S.I. $=\frac{P \times R \times T}{100}$
$\therefore \quad y=\frac{x \times R \times T}{100}$
$\therefore \quad z=\frac{y \times R \times T}{100}$
On dividing eqn. (i) by (ii) we get,
$\therefore \frac{y}{z}=\frac{x}{y} \Rightarrow y^{2}=z x$.
Hence, option D is correct.
9. To solve this questions we can apply a short trick approach

Amount $(A)=2400 /-$, Rate of interest $(R)=5 \%$, Time $(T)=4$ yrs
$S I-T D=\frac{A(R \times T)^{2}}{100(100+R \times T)}$
$=\frac{2400 \times(5 \times 4)^{2}}{100(100+5 \times 4)}$
$=\frac{2400 \times 20 \times 20}{100 \times 120}=80 /-$
Hence, option B is correct.
10. Given,
$P=16000-4000=12000, \quad r=12 \%$
$\mathrm{t}=15$ months $=\frac{15}{12} \mathrm{yrs}$

SI $=\frac{12000 \times 12 \times(15 / 12)}{100}=\frac{12000 \times 12 \times 15}{100 \times 12}=1800$
Total amount $=16000+1800=17800 /-$
Hence, option B is correct.

12 Month Plan

2017-18 All Test Series
@ Just

$$
\begin{aligned}
& \text { ₹ 399/- } \\
& 300+\text { फुल लेन्थ टेस्ट }
\end{aligned}
$$ अभी जुड़ें

