-1 SmartKeeda

 Presents

 Presents}

TestZone

India's least priced Test Series platform

12 Month Plan
 2017-18 All Test Series

@ Just

₹ 399/-

300+ Full Length Tests

\checkmark Brilliant Test Analysis
\boxtimes Excellent Content
\checkmark Unmatched Explanations

Time and Distance Questions for CDS, CLAT \& SSC Exams.

Time and distance Quiz 5
Directions: Study the following Questions carefully and choose the right answer:

1. A man can walk uphill at the rate of $2.5 \mathrm{~km} / \mathrm{h}$ and downhill at the rate of $3.25 \mathrm{~km} / \mathrm{h}$. If the total time required walking a certain distance up the hill and return to the starting position is 4 h 36 min , what is the distance he walked up the hill?
A. 3.5 km
B. 4.5 km
C. 5.5 km
D. 6.5 km
2. A car is travelling at a constant rate of $45 \mathrm{~km} / \mathrm{h}$. The distance travelled by car from $10: 40$ am to $1: 00 \mathrm{pm}$ is
A. 165 km
B. 150 km
C. 120 km
D. 105 km
3. A person travels a certain distance at $3 \mathrm{~km} / \mathrm{hr}$ and reaches 15 min late. If he travels at 4 $\mathrm{km} / \mathrm{hr}$, he reaches 15 min earlier. The distance he has to travel is
A. 4.5 km
B. 6 km
C. 7.2 km
D. 12 km
4. If a body covers a distance at the rate of $x \mathrm{~km} / \mathrm{h}$ and another equal distance at the rate of $y \mathrm{~km} / \mathrm{h}$, then the average speed (in km / h) is
A. $\frac{x+y}{2}$
B. \sqrt{x}
C. $\frac{x+y}{x y}$
D. $\frac{2 x y}{x+y}$
5. A father and his son start at a point A with speeds of $12 \mathrm{~km} / \mathrm{h}$ and $18 \mathrm{~km} / \mathrm{h}$ respectively and reach another point B. If his son starts 60 min after his father at A and reaches $B, 60$ min before his father, what is the distance between A and B ?
A. 90 km
B. 72 km
C. 36 km
D. None of these
6. Two men P and Q start from a place walking at $5 \mathrm{~km} / \mathrm{h}$ and $6.5 \mathrm{~km} / \mathrm{h}$, respectively. What is the time they will take to be 92 km apart, if they walk in opposite directions?
A. 2 h
B. 4 h
C. 6 h
D. 8 h
7. A wheel of radius 2.1 m of vehicle makes 75 revolutions in 1 min . what is the speed of the vehicle?
A. $78 \mathrm{~km} / \mathrm{hr}$
B. $59.4 \mathrm{~km} / \mathrm{hr}$
C. $37.4 \mathrm{~km} / \mathrm{hr}$
D. $35.4 \mathrm{~km} / \mathrm{hr}$
8. A man cycles with a speed of $10 \mathrm{~km} / \mathrm{h}$ and reaches his offices at 1 pm . However, when he cycles with a speed of $15 \mathrm{~km} / \mathrm{h}$, he reaches his office at 11 am . At what speed should he cycle, so that he reaches his office at 12 noon?
A. $12.5 \mathrm{~km} / \mathrm{hr}$
B. $12 \mathrm{~km} / \mathrm{hr}$
C. $13 \mathrm{~km} / \mathrm{hr}$
D. $13 / 5 \mathrm{~km} / \mathrm{hr}$
9. Two cars A and B start simultaneously from a certain place at the speed of $30 \mathrm{~km} / \mathrm{h}$ and 45 km / h, respectively. The car B reaches the destination 2 h earlier than A. what is the distance between the starting point and destination?
A. 90 km
B. 180 km
C. 270 km
D. 360 km
10. A man covers a total distance of 100 km on bicycle. For the first 2 hours, the speed was $20 \mathrm{~km} / \mathrm{hr}$ and for the rest of the journey, it came down to $10 \mathrm{~km} / \mathrm{hr}$. The average speed will be
A. $12.5 \mathrm{~km} / \mathrm{hr}$
B. $13 \mathrm{~km} / \mathrm{hr}$
C. $15 \frac{1}{8} \mathrm{~km} / \mathrm{hr}$
D. $20 \mathrm{Km} / \mathrm{hr}$

Correct Answers:

$\mathbf{1}$	$\mathbf{2}$	$\mathbf{3}$	$\mathbf{4}$	$\mathbf{5}$	$\mathbf{6}$	$\mathbf{7}$	$\mathbf{8}$	$\mathbf{9}$	$\mathbf{1 0}$
D	D	B	D	B	D	B	B	B	A

Explanations:

1. Let the walked up at a distance of $x \mathrm{~km}$. then
$\frac{x}{2.5}+\frac{x}{3.25}=4 \frac{36}{60}$
$\Rightarrow \frac{10 x}{25}+\frac{100 x}{325}=4 \frac{3}{5}$
$\Rightarrow \frac{130 x+100 x}{325}=\frac{23}{5}$
$\Rightarrow \frac{230 x}{325}=\frac{23}{5}$
$\Rightarrow 10 x=65 \Rightarrow x=6.5 \mathrm{~km}$
Hence, option D is correct.
2. Let the distance be $x \mathrm{~km}$.

And time taken by car $=2 \mathrm{hr} 20 \mathrm{mins}$
$=2 \frac{20}{60}=2 \frac{1}{3}=\frac{7}{3} \mathrm{hrs}$
Distance $=$ Speed \times Time
$=\frac{7}{3} \times 45=105 \mathrm{~km}$.
Hence, option D is correct.
3. Let the distance be x and the difference between time taken $=15-(-15)=30 \mathrm{mins}=\frac{1}{2} \mathrm{hr}$.

Time taken when travelled at $3 \mathrm{~km} / \mathrm{hr}$ (slower) - Time taken when travelled at $4 \mathrm{~km} / \mathrm{hr}$ (faster) $=$ Difference in time $=\frac{1}{2} \mathrm{hr}$
$\frac{x}{3}-\frac{x}{4}=\frac{1}{2}$
$\Rightarrow \frac{4 x-3 x}{12}=\frac{1}{2} \Rightarrow x=6 \mathrm{~km}$.
Hence, option B is correct.
4. Let the distance be 1 Km . then,

Average speed $=\frac{\text { Total distance travelled }}{\text { Total time taken }}$
$=\frac{1+1}{\left(\frac{1}{x}+\frac{1}{y}\right)}$
$=\frac{2}{\left(\frac{x+y}{x y}\right)}$
$=\frac{2 x y}{x+y}$

Hence, option D is correct.
5. Let the distance be x and the difference in time taken by the father and the son $=60+60=120 \mathrm{mins}=2$
hrs. (The son reaches 2 hours faster than the father.)
Time taken by the father - Time taken by the son $=2$ hours
$\frac{x}{12}-\frac{x}{18}=2$
$\Rightarrow \frac{3 x-2 x}{36}=2 \Rightarrow x=72 \mathrm{~km}$

Hence, option B is correct.
6. Given,

Distance $=92 \mathrm{~km}$, Relative Speed $=5+6.5=11.5 \mathrm{~km} / \mathrm{h}$
\therefore Reqd. Time $=\frac{\text { Distance }}{\text { Relative speed }}=\frac{92}{11.5}=8 \mathrm{~h}$
Hence, option D is correct.
7. Radius of the wheel $=2.1 \mathrm{~m}$ and time taken to do given number of revolutions $=1 \mathrm{~min}=1 / 60 \mathrm{hr}$ Distance covered in 1 revolution $=2 \pi r$
$=2 \times \frac{22}{7} \times 2.1$
Distance covered in 75 revolutions;
$=75 \times 2 \times \frac{22}{7} \times 2.1$
$=990 \mathrm{~m}=0.99 \mathrm{~km}$
Reqd. speed $=\frac{0.99}{1 / 60}=59.4 \mathrm{~km} / \mathrm{h}$

Hence, option B is correct.
8. Let the distance be $x \mathrm{~km}$. then,

Time taken by slower train - Time taken by faster train = Difference in time
$\frac{x}{10}-\frac{x}{15}=1 \mathrm{pm}-11 \mathrm{am}$
$\Rightarrow \frac{3 x-2 x}{30}=2 \Rightarrow x=60 \mathrm{~km}$
At $10 \mathrm{~km} / \mathrm{hr}$ speed a man takes 6 hr and reach at 1 pm
At $15 \mathrm{~km} / \mathrm{hr}$ speed a man takes 4 hr and reach at 11 am
Similarly, to reach the destination at 12 pm (the mid value of the given points of time) he will take 5 hrs (the mid value of given periods of time).
So, the speed of the person
$=\frac{60}{5}=12 \mathrm{~km} / \mathrm{hr}$
Hence, option B is correct.
9. Let the distance be $x \mathrm{~km}$. then,

Time taken by the slower car - Time taken by the faster car $=2$ hours
$\frac{x}{30}-\frac{x}{45}=2$
$\Rightarrow \frac{3 x-2 x}{90}=2 \Rightarrow x=180 \mathrm{~km}$.

Hence, option B is correct.
10. Distance covered in $1^{\text {st }} 2$ hours $=2 \times 20=40 \mathrm{~km}$
\therefore Remaining distance $=100-40=60 \mathrm{~km}$
Speed in the rest of the journey $=10 \mathrm{~km} / \mathrm{hr}$
Time taken in the rest of the journey
$=\frac{60}{10}=6$ hours
\therefore Average speed
$=\frac{\text { Total Distance }}{\text { Total Time }}=\frac{100}{2+6}=\frac{100}{8}$
$=12.5 \mathrm{~km} / \mathrm{hr}$

Hence, option A is correct.

$\sim^{\prime}-$ SmartKeeda The Question Bank प्रस्तुत करते हैं

 TestZone

 TestZone भारत की सबसे किफायती टेस्ट सीरीज़
 ■ (3)

12 Month Plan

2017-18 All Test Series

@ Just

₹ 399/-
 300 + फुल लेन्थ टेस्ट

『 श्रेष्ठ विश्लेषण
『 उत्कृष्ट विषय सामग्री
\checkmark बेजोड़ व्याख्या

