-1 SmartKeeda

 Presents

 Presents}

TestZone

India's least priced Test Series platform

12 Month Plan
 2017-18 All Test Series

@ Just

₹ 399/-

300+ Full Length Tests

\checkmark Brilliant Test Analysis
\boxtimes Excellent Content
\checkmark Unmatched Explanations

Time and work Questions for Bank Clerk Pre Exams.

Time and work Quiz 5
Directions: Study the following Questions carefully and choose the right answer:

1. A takes three times as long as B and C together to do a job. B takes four times as long as A and C together to do the same work, If all three, working together can complete the job in 24 days, then the number of days, A alone will take to finish the job is:
A. 100
B. 96
C. 95
D. 90
E. None of these
2. A can do piece of work in 8 days which B can destroy in 3 days. A has worked for 6 days, during the last 2 days of which B has been destroying. How many days must A now work alone to complete the work?
A. 7 day
B. $7 \frac{2}{3}$ days
C. $7 \frac{1}{3}$ days
D. 8 days
E. None of these
3. 4 boys and 3 women can do a piece of work in 6 days while 2 boys and 4 women can do the same piece of work in 9 days. How much time will be taken by 7 boys and 9 women to do the same piece of work?
A. 3 days
B. 7 days
C. 8 days
D. 12 days
E. None of these
4. Working alone, Typewriters A, B, C can do a certain typing job, consisting of a large number of pages, in 12,15 and 18 hours, respectively. What is the ratio of the time it takes Typewriter A to do the job, working alone at its rate, to the time it takes Type writer B and C to do the job, working together at their individual rate?
A. $\frac{4}{11}$
B. $\frac{1}{2}$
C. $\frac{15}{22}$
D. $\frac{22}{15}$
E. None of these
5. A, B and C can do a piece of work in 4,7 and 8 days respectively. They undertook to finish the work together for Rs. 53650. Find the difference (in Rs.) between the share of A and that of B.
A. 10100
B. 11100
C. 11650
D. 12560
E. None of these
6. 7 men and 9 women can earn Rs. 3288 in 8 days. 9 men and 5 women can earn Rs. 2106 in 6 days. In how many days will 6 men and 5 women earn Rs. 1116?
A. 4 days
B. 6 days
C. 8 days
D. 9 days
E. None of these
7. A man is Thrice as fast as a woman and a woman is twice as fast as a boy in doing a work. If all of them, a man, a woman and a boy can finish the work in 9 days, in how many days a boy will do it alone?
A. 81 days
B. 9 days
C. 6 days
D. 27 days
E. None of these
8. Nitin and Nirdosh can do a piece of work in 45 days and 40 days respectively. They began to work together but Nitin leaves after ' x ' days and Nirdosh finished the rest of the work in ($x+14$) days. After how many days did Nitin leave?
A. 11 days
B. 12 days
C. 13 days
D. 9 days
E. None of these
9. A garrison of 6600 men had provisions for 64 days at the rate of 1700 g per head. At the end of 14 days, reinforcement arrives and it was found that the provision will last 34 days more at the rate of 1650 g per head. What is the strength of the reinforcement?
A. 3400
B. 6800
C. 3300
D. 3500
E. None of these
10. A construction company has $100 / 3 \%$ of its employees as women. 50% of these women are married and $100 / 3 \%$ of married women have children. 75% of the men are married and 200/3\% of married men have children. If no two employees are married to each other what fraction of the employees do not have children?
A. $\frac{13}{18}$
B. $\frac{11}{18}$
C. $\frac{17}{18}$
D. $\frac{7}{18}$
E. None of these

Correct Answers:

$\mathbf{1}$	$\mathbf{2}$	$\mathbf{3}$	$\mathbf{4}$	$\mathbf{5}$	$\mathbf{6}$	$\mathbf{7}$	$\mathbf{8}$	$\mathbf{9}$	$\mathbf{1 0}$
B	C	A	D	B	A	A	D	A	B

Explanations:

1. Approach I:

Time taken by A : Time taken by B and C together $=3: 1$
Therefore, 1 day's work done by A : 1 day's work done by B and C together $=1: 3$
[Because work done or efficiency is inversely proportional to time taken.]
We can further write the equation as
1 day's work done by $\mathrm{A}: 1$ day's work done by A, B and C together $=1: 4$
Therefore, time taken by A : Time taken by A, B and C together = $4: 1$
Here we can observe that if A, B and C working together takes 1 day, A alone is taking 4 days which means he is taking 4 times the time taken by A, B and C together.
Therefore, actual time taken by A alone $=4 \times 24=96$ days
Approach II:
Let 1 day's efficiency of each of the individuals is A, B and C respectively.
As per the given information, we get the efficiency equations as follows
$3 A=(B+C) \quad .$. (i)
$A+B+C=24$
Putting 3A in place of ($B+C$) in equation (ii), we get
$A+3 A=24$
$4 \mathrm{~A}=24$
Now, 4A do the whole work in 24 days.
Therefore, A alone will do the whole work in $24 \times 4=96$ days.
Hence, option B is correct.
2.

A's 1 day's efficiency $=\frac{1}{8}$
B's 1 day's efficiency $=-\frac{1}{3}$
Let's assume A takes x more days to complete the work.
The equation will be like
$=\frac{(6+x)}{8}-\frac{2}{3}=1$
$=\frac{(6+x)}{8}=1+\frac{2}{3}=\frac{5}{3}$
$\Rightarrow 3(6+x)=40$
$\Rightarrow 18+3 x=40$
$\Rightarrow 3 x=22$
$\therefore \quad \mathrm{x}=\frac{22}{3}=7 \frac{1}{3}$ days
Hence, option C is correct.
3. As per the given information, work done by 4 boys and 3 women in 6 days must be equal to work done by 2 boys and 4 women in 9 days.
Therefore, we get
$(4 \mathrm{~B}+3 \mathrm{~W}) \times 6=(2 \mathrm{~B}+4 \mathrm{~W}) \times 9$
$\Rightarrow 24 \mathrm{~B}+18 \mathrm{~W}=18 \mathrm{~B}+36 \mathrm{~W}$
$\Rightarrow 6 \mathrm{~B}=18 \mathrm{~W} \Rightarrow 1 \mathrm{~B}=3 \mathrm{~W}$
Now, $2 B+4 W=(2 \times 3) W+4 W=10 W$
$\Rightarrow 10$ women do a piece of work in 9 days.
Similarly, $7 B+9 W=(7 \times 3) w+9 W=30 W$
Now, when 10 women do a piece of work in 9 days,
30 women (thrice of 10) will do the same piece of work in 3 days (\because Time $\propto 1 / E f f i c i e n c y$).
Hence, option A is correct.
4. Since Typewriter B can do the job in 15 hours,
it can do $\frac{1}{15}$ of the job in 1 hour.
Since Typewriter C can do the job in 18 hours
it can do $\frac{1}{18}$ of the job in 1 hour.
Together Typewriters B and C can do
$\left(\frac{1}{15}+\frac{1}{18}\right)=\left(\frac{6}{90}+\frac{5}{90}\right)=\frac{11}{90}$ of the job in 1 hour
Which means that it takes them $=\frac{90}{11}$ hours
To complete the job. Since Typewriter A completes the job in 12 hours, the ratio of the time required for A to do the job to the time required for B and C working together to do the job is
$\frac{12}{90}=\frac{12(11)}{90}=\frac{2(11)}{15}=\frac{22}{15}$
11
Hence, option (D) is correct.
5. We know that

The ratio of shares of A, B and $C=$ The ratio of their efficiencies
$=\frac{1}{4}: \frac{1}{7}: \frac{1}{8}$
$=\frac{14}{56}: \frac{8}{56}: \frac{7}{56}=14: 8: 7$
Difference between the shares of A and B in ratio $\frac{6}{29}$
\therefore Actual difference in value $=\frac{6}{29} \times 53650=11,100 /-$
Hence, option B is correct.
6. Let the earnings of a man be x and that of a woman be y.
$\therefore 7 x+9 y=\frac{3288}{8}=411$
$\therefore \quad 9 x+5 y=\frac{2106}{6}=351$
From the eqn. (i) and (ii), we get $\mathrm{x}=24$ and $\mathrm{y}=27 \therefore$ Earnings of six men and five women $=6 \times 24+5 \times 27=$ $144+135=279$
\therefore Number of days $=\frac{1116}{279}=4$ days

Hence, option A is correct.
7. According to the question, 1 man $\equiv 3$ women $\equiv 6$ boys $\therefore 1$ man +1 woman +1 boys $=(6+2+1)$ boys $=9$ boys Applying the chain-rule formula $M_{1} D_{1}=M_{2} D_{2} \Rightarrow 9 \times 9=1 \times D_{2} \Rightarrow D_{2}=81$ days

Hence, option A is correct.
8. As per the given information, Nitin's x days' efficiency + Nirdosh's $\{x+(x+14)\}$ days' efficiency $=1$
$\Rightarrow \frac{x}{45}+\frac{x+x+14}{40}=1$
$\Rightarrow \frac{8 x+9(2 x+14)}{360}=1$
$\Rightarrow 8 x+18 x+126=360 \Rightarrow 26 x=234$
$\therefore \quad x=\frac{234}{26}=9$ days
Hence, option D is correct.
9. The given problem takes the form as follows : 6600 men taking 1700 g per head have provision for (64 14) = 50 days how many men taking 1650 g per head have provision for 34 days ? Less provision per head, More men (Indirect) Less days, More men (Indirect)
$\left.\begin{array}{l}\text { Provision1650:1700 } \\ \text { Days } 18: 24\end{array}\right\}:$: $6600: x$
$\therefore 1650 \times 34 \times \mathrm{x}=1700 \times 50 \times 6600$
$\therefore \quad \mathrm{x}=\frac{1700 \times 50 \times 6600}{1650 \times 34}=10000$
\therefore Strength of reinforcement $=10000-6600=3400$
Hence, option A is correct.
10. Let 90 be the no. employees in the company

Therefore, total women employees $=\frac{90}{3}=30$
$\left\{\right.$ as $\left.\frac{100}{3} \%=\frac{1}{3}\right\}$
As no. of women married $=50 \%$ of $30=15$
No. of married women having children $=\frac{100}{3} \%$ of $15=5$

No. of married women not having children $=15-5=10$
Now, total male employees $=$ total - no. of women $=90-30=60$
75% of men are married $=75 \%$ of $60=45$
No. of married men having children
$=\frac{200}{3} \%$ of $45=30$
No. of married men not having children $=45-30=15$
Now total married employees not having children in the company = no. of unmarried men and women + men and women not having children $=15+15+10+15=55$
Required fraction $=\frac{55}{90}=\frac{11}{18}$
Hence, option (B) is correct.

12 Month Plan

2017-18 All Test Series
@ Just

$$
\begin{aligned}
& \text { ₹ 399/- } \\
& 300+\text { फुल लेन्थ टेस्ट }
\end{aligned}
$$ अभी जुड़ें

