-1 SmartKeeda

 Presents

 Presents}

TestZone

India's least priced Test Series platform

12 Month Plan
 2017-18 All Test Series

@ Just

₹ 399/-

300+ Full Length Tests

\checkmark Brilliant Test Analysis
\boxtimes Excellent Content
\checkmark Unmatched Explanations

Time and work Questions for CDS, CLAT \& SSC Exams.

Time and work Quiz 6
Directions: Study the following Questions carefully and choose the right answer:

1. A, B and C can do a piece of work individually in 8,10 and 15 days, respectively. A and B start working but A quits after working for 2 days. After this, C joins B till the completion of work. In how many days will work be completed?
A. $\frac{53}{9}$ days
B. $\frac{34}{7}$ days
C. $\frac{85}{13}$ days
D. $\frac{53}{10}$ days
2. A can do a piece of work in ' x ' days and B can do the same work $3 x$ days. To finish the work together they take $\mathbf{1 2}$ days. What is the value of ' x '?
A. 8
B. 10
C. 12
D. 16
3. A and B can do a piece of work in 10 h . B and C can do it in 15 h , while A and C take 12 h to complete the work. B independently can complete the work in
A. 12 h
B. 16 h
C. 20 h
D. 24 h
4. X can do a piece of work in 25 days. Y is 25% more efficient than X. The number of days taken by Y is
A. 15 days
B. 20 days
C. 21 days
D. 30 days
5. A mason can build a tank in 12 h . After working for 6 h , he took the help of a boy and finished the work in another 5 h . The time that the boys will take alone to complete the work is
A. 30 h
B. 45 h
C. 60 h
D. 64 h
6. A can finish a work in 15 days, B in 20 days and C in 25 days. All these worked together and earned Rs. 4700. The share of C is
A. Rs. 1200
B. Rs. 1500
C. Rs. 1800
D. Rs. 2000
7. X can do a work in 16 days. In how many days will the work be completed by Y, if the efficiency of Y is 60% more than that of X ?
A. 10 days
B. 12 days
C. 25 days
D. 30 days
8. A, B and C can do a piece of work individually in 8,12 and 15 days, respectively. A and B start working but A quits after working for 2 days. After this, C joins B till the completion of work. In how many days will the work be completed?
A. $5 \frac{8}{9}$ days
B. $4 \frac{6}{7}$ days
C. $6 \frac{7}{13}$ days
D. $3 \frac{3}{4}$ days
9. 4 men, 6 women and 8 children can complete a work in 11 days. A woman does double the work a man does and a child does the half the work a man does. How many women alone can do the same work in 11 days?
A. 8 women
B. 10 women
C. 17 women
D. 21 women
10. If 5 men and 7 women can plough a field in 10 days while 20 men and 42 women do the same work in 2 days, find the time taken by 10 men and 15 women to plough the field.
A. 5 days
B. $5 \frac{24}{29}$ days
C. 6 days
D. $4 \frac{24}{29}$ days

Correct Answers:

$\mathbf{1}$	$\mathbf{2}$	$\mathbf{3}$	$\mathbf{4}$	$\mathbf{5}$	$\mathbf{6}$	$\mathbf{7}$	$\mathbf{8}$	$\mathbf{9}$	$\mathbf{1 0}$
D	D	D	B	C	A	A	D	A	B

Explanations:

1. A's and B's 2 day's work
$=\frac{2}{8}+\frac{2}{10}=\frac{18}{40}=\frac{9}{20}$
\therefore Remaining work
$=1-\frac{9}{20}=\frac{11}{20}$

Work done by $\mathrm{B}+\mathrm{C}$ in 1 day
$=\frac{1}{10}+\frac{1}{15}=\frac{5}{30}=\frac{1}{6}$

Since, $(B+C)$ finish a work in 6 days.
$\because \frac{11}{20}$ work together $=6 \times \frac{11}{20}$
$=\frac{11 \times 3}{10}=\frac{33}{10}$ days
\because Total number of days
$=2+\frac{33}{10}=\frac{53}{10}$ days
Hence, option D is correct.
2.

A's 1 day's work $=\frac{1}{x}$
B's 1 day's work $=\frac{1}{3 x}$
A's and B's 1 day's work
$=\frac{1}{x}+\frac{1}{3 x}=\frac{4}{3 x}$
From the given information, we get
$\Rightarrow \frac{4}{3 x}=\frac{1}{12} \Rightarrow x=16$.

Hence, option D is correct.
3. To solve this question, we can apply a short trick approach;
B alone will do the same work in
$\left[\frac{2 x y z}{y z+z x-x y}\right]$ hours.
A and B together finish a piece work $=x=10$ hours
B and C together finish a piece work $=y=15$ hours
C and A together finish a piece work $=\mathrm{z}=12$ hours
By the short trick approach: B can do the work in
$=\frac{2 \times 10 \times 15 \times 12}{15 \times 12+10 \times 12-10 \times 15}$ days

After taking 5 as a common term, we get
$=\frac{2 \times 2 \times 15 \times 12}{3 \times 12+2 \times 12-2 \times 15}$ days
$=\frac{2 \times 30 \times 12}{36+24-30}$
$=\frac{2 \times 30 \times 12}{30}=24 \mathrm{hrs}$

Traditional Method:

A's and B's 1 h work $=\frac{1}{10}$
B's and C's 1 h work $=\frac{1}{15}$
and A's and C's 1 h work $=\frac{1}{12}$
\therefore A's, B's and C's 1 h work
$=\frac{1}{2}\left(\frac{1}{10}+\frac{1}{15}+\frac{1}{12}\right)$
$=\frac{1}{2}\left(\frac{1}{10}+\frac{1}{15}+\frac{1}{12}\right)$
$=\frac{1}{2} \times \frac{15}{60}=\frac{1}{8}$
Hence, B's work in 1 h
$=\frac{1}{8}-\frac{1}{12}=\frac{1}{24}$
So, B independently can complete the work in 24 h .
Hence, option D is correct.
4.

X's 1 day's work $=\frac{1}{25}$

Y's 1 day's work
$=X$'s one day's work $\times \frac{100+a}{100}$
Where a is the percentage increase in efficiency.
$=\frac{1}{25} \times \frac{100+25}{100}$
$=\frac{125}{25 \times 100}=\frac{1}{20}$
Y alone finish the work in 20 days.
Hence, option B is correct.
5. Work done by Mason in 1 h
$=\frac{1}{12}$

Work done by Mason in 6 h
$=\frac{6}{12}=\frac{1}{2}$
\therefore Remaining work
$=1-\frac{1}{2}=\frac{1}{2}$

Now, let the boys finish the work in xh
Then, work done by Mason and boy in 1 h
$=\frac{1}{12}+\frac{1}{x}=\frac{x+12}{12 x}$

Then, work done by Mason and boy in 5 h
$=5 \times \frac{x+12}{12 x}=\frac{1}{2}$
$\Rightarrow \frac{5 x+60}{12 x}=\frac{1}{2}$
$\Rightarrow 10 x+120=12 x \Rightarrow x=60 h$.
Hence, option C is correct.
6. Ratio of work done by A, B and C
$=\frac{1}{15}: \frac{1}{20}: \frac{1}{25}$
$=20: 25: 12$
Now, ratio in their amount $=20: 15: 12$
\therefore Share of C
$=\frac{12}{20+15+12} \times 4700=$ Rs. 1200 .
Hence, option A is correct.
7. Y's 1 day's work
= X's one day's work $\times \frac{100+a}{100}$
Where a is the percentage increase in efficiency.
X's 1 day's work $=\frac{1}{16}$
$=\frac{1}{16} \times \frac{100+60}{100}$
$=\frac{160}{16 \times 100}=\frac{1}{10}$
Y alone finish the work in 10 days.
Hence, option A is correct.
8. Work done by A and B in 2 days
$=\frac{2}{8}+\frac{2}{12}=\frac{5}{12}$
After 2 days A left the work;
\therefore Remaining work
$=1-\frac{5}{12}=\frac{7}{12}$
One day is work of B and C together
$=\frac{1}{12}+\frac{1}{15}=\frac{9}{60}$
So, the number of days required by B and C to finish work
$=\frac{14 / 24}{9 / 60}=\frac{14}{24} \times \frac{60}{9}=\frac{35}{9}$
\therefore Total days to complete the work
$=2+\frac{35}{9}=\frac{53}{9}=5 \frac{8}{9}$ days
Hence, option A is correct.
9. 1 woman $\equiv 2$ men

1 man $\equiv 2$ children
1 woman $\equiv 4$ children
i.e. 4 men $\equiv \frac{4}{2}$ women $=2$ women

8 children $\equiv \frac{8}{4}=2$ women
are doing work in 11 days.
i.e. no. of women doing work in 11 days $=2+6+2=10$ women.

Hence, option B is correct.
10. $(5 m+7 w) \times 10=(20 m+42 w) \times 2$
$\Rightarrow 50 \mathrm{~m}+70 \mathrm{w}=40 \mathrm{~m}+84 \mathrm{w}$
$\Rightarrow 10 \mathrm{~m}=14 \mathrm{w} \Rightarrow 5 \mathrm{~m}=7 \mathrm{w}$
Or, $1 \mathrm{~m}=\frac{7}{5} \mathrm{w}$

Now, $(5 m+7 w)$
$=5 \times \frac{7}{5} w+7 w=14 w$

Similarly, (10m + 15w)
$=10 \times \frac{7}{5} w+15 w=29 w$
Now, apply the chain rule method,
$M_{1} D_{1}=M_{2} D_{2}$
$\mathrm{M}_{1}=14, \mathrm{M}_{2}=29 \mathrm{w}, \mathrm{D}_{1}=10$ days, $\mathrm{D}_{2}=$?
$14 \times 10=29 \times$?
$?=\frac{140}{29}$ days $=4 \frac{24}{29}$ days

Hence, option D is correct.

12 Month Plan

2017-18 All Test Series
@ Just

$$
\begin{aligned}
& \text { ₹ 399/- } \\
& 300+\text { फुल लेन्थ टेस्ट }
\end{aligned}
$$ अभी जुड़ें

