

Triangle Questions for SSC Exams (CGL Tier 1, CGL Tier 2 \& SSC $10+2$)

Triangle Quiz 1

Directions: Study the following questions carefully and choose the right answer:

1. Consider the following statements
I. If G is the centroid of $\triangle A B C$, then $G A=G B=G C$.
II. If H is the orthocentre of $\triangle A B C$, then $H A=H B=H C$.

Which of the statements given above is/are correct?
A. Only I
B. Only II
C. Both I and II
D. Neither I nor II
2. $A B$ is a straight line, C and D are points the same side of $A B$ such that $A C$ is perpendicular to $A B$ and $D B$ is perpendicular to
$A B$. Let $A D$ and $B C$ meet at E. What is $\frac{A E}{A D}+\frac{B E}{B C}$ equal to?
A. 2
B. 1.5
C. 1
D. None of these
3. The three sides of a triangle are 15, 25 and x units. Which one of the following is correct?
A. $10<x<40$
B. $10 \leq x \leq 40$
C. $10 \leq x<40$
D. $10<x \leq 40$
4. Which one of the following is a Pythagorean triple in which one side differs from the hypotenuse by two units? Where, n is a positive real number.
A. $\left(2 n+1,4 n, 2 n^{2}+2 n\right)$
B. $\left(2 n, 4 n, n^{2}+1\right)$
C. $\left(2 n^{2}, 2 n, 2 n+1\right)$
D. $\left(2 n, n^{2}-1, n^{2}+1\right)$
5. The sides of a right angled triangle are equal to three consecutive numbers expressed in centimeters. What can be the area of such a triangle?
A. $6 \mathrm{~cm}^{2}$
B. $8 \mathrm{~cm}^{2}$
C. $10 \mathrm{~cm}^{2}$
D. $12 \mathrm{~cm}^{2}$
6. If $A D$ is the internal angular bisector of angle A of $\triangle A B C$ with $A B=3 \mathrm{~cm}$ and $A C$ $=1 \mathrm{~cm}$, then what is $\mathrm{BD}: \mathrm{BC}$ equal to?
A. $1: 3$
B. $1: 4$
C. $2: 3$
D. $3: 4$
7. The sides of a triangle are in geometric progression with common ratio $r<1$. If the triangle is a right angled triangle, the square of common ratio is given by
A. $\frac{\sqrt{5}+1}{2}$
B. $\frac{\sqrt{5}-1}{2}$
C. $\frac{\sqrt{3}+1}{2}$
D. $\frac{\sqrt{3}-1}{2}$
8. If triangles $A B C$ and $D E F$ are similar such that $2 A B=D E$ and $B C=8 \mathrm{~cm}$, then what is EF equal to?
A. 16 cm
B. 12 cm
C. 10 cm
D. 8 cm
9. In a $\triangle A B C, A D$ is perpendicular to $B C$ and $B E$ is perpendicular to $A C$. Which of the following is correct?
A. $C E \times C B=C A \times C D$
B. $C E \times C A=C D \times C B$
C. $A D \times B D=A E \times B E$
D. $A B \times A C=A D \times B E$
10. Let $A B C$ is triangle right angled at B. If $A B=6 \mathrm{~cm}$ and $B C=8 \mathrm{~cm}$, then what is the length of the circumradius of the $\triangle A B C$?
A. 10 cm
B. 7 cm
C. 6 cm
D. 5 cm

Correct Answers:

$\mathbf{1}$	$\mathbf{2}$	$\mathbf{3}$	$\mathbf{4}$	$\mathbf{5}$	$\mathbf{6}$	$\mathbf{7}$	$\mathbf{8}$	$\mathbf{9}$	$\mathbf{1 0}$
D	D	A	D	A	D	B	A	C	D

Explanations:

1.

$G A=G B=G C$ is true only and only for equilateral triangle and here it is not given that $A B C$ is an equilateral triangle. So, only for equilateral triangle.

Hence, it is also not correct.
Hence, option D is correct.
2.

Since, $A B$ is a straight line and C and D are points such that $A C \perp A B$ and $B D \perp A B$.

$\therefore \quad \mathrm{AC} \| \mathrm{BD}$
So, $A B C D$ forms trapezium.
Now, by property of trapezium diagonals intersect each other in the ratio of lengths of parallel sides.
$\therefore \frac{A E}{E D}=\frac{B E}{C E} \Rightarrow \frac{A E}{A D-A E}=\frac{B E}{B C-B E}$
$\Rightarrow \frac{\mathrm{BC}-\mathrm{BE}}{\mathrm{BE}}=\frac{\mathrm{AE}-\mathrm{AE}}{\mathrm{BC}-\mathrm{BE}} \quad \Rightarrow \quad \frac{\mathrm{BC}}{\mathrm{BE}}-1=\frac{\mathrm{AD}}{\mathrm{AE}}-1$
$\Rightarrow \frac{\mathrm{BC}}{\mathrm{BE}}=\frac{\mathrm{AD}}{\mathrm{AE}}$
$\Rightarrow \frac{\mathrm{AE}}{\mathrm{AD}}=\frac{\mathrm{BE}}{\mathrm{BC}}$
But the value of $\frac{A E}{A D}$ or $\frac{B E}{B D}$ Can't be determined.
So, we can't find the value of $\frac{\mathrm{AE}}{\mathrm{AD}}+\frac{\mathrm{BE}}{\mathrm{BD}}$.
Hence, option D is correct.
3.

In a triangle
Sum to two sides is always greater than 3rd side
i.e., $x<40$..... (i)

Difference of two sides is always less than 3rd side
i.e., $10<x \quad$..... (7ii)

From Eqs. (i) and (ii),
$10<x<40$.
Hence, option A is correct.
4.

By hit and trial method,
Put $\mathrm{n}=2$ in option (d)
$=\left[(2 \times 2),(2)^{2}-1,(2)^{2}+1\right]=(4,3,5)$
Which satisfy Pythagoras theorem and one side differes from hypotenuse by 2 units.
Hence, option D is correct.
5.

Since, the triangle is right angled. So, all the three consecutive sides must satisfy Pythagoras theorem.

Hence, 3, 4 and 5 are the sides of triangle which satisfy pythagoras theoram.
$\therefore \quad$ Area of triangle $=\frac{1}{2} \times 4 \times 3=6 \mathrm{~cm}^{2}$
Hence, option A is correct.
6.

In $\triangle A B C$,
$A D$ is the internal angle bisector of $\angle A$.
Using property of internal angle bisector.

$\Rightarrow \frac{C D}{B D}+1=\frac{A C}{A B}+1 \quad \Rightarrow \quad \frac{C D+B D}{B D}=\frac{A C+A B}{A B}$
$\Rightarrow \frac{\mathrm{BC}}{\mathrm{BD}}=\frac{3+1}{3} \Rightarrow \frac{\mathrm{BD}}{\mathrm{BC}}=\frac{3}{4}$
$\therefore \quad B D: B C=3: 4$.
Hence, option D is correct.
7.
let the sides of triangle be $\frac{a}{r}, a$, ar and since $r<1$.
$\therefore \frac{\mathrm{a}}{\mathrm{r}}>\mathrm{a}>\mathrm{ar}$
Now, triangle is right angled.
Using Pythagoras theorem.
$\left(\frac{a}{r}\right)^{2}=(a)^{2}+(a r)^{2} \Rightarrow \frac{a^{2}}{r^{2}}=a^{2}+a^{2} r^{2}$
$\Rightarrow \frac{a^{2}}{r^{2}}=a^{2}\left(1+r^{2}\right) \Rightarrow r^{2}+r^{4}=1$.
Put $r^{2}=x$
$\therefore \quad \mathrm{x}^{2}+\mathrm{x}-1=0$
Applying Sridharacharya rule, we get
$\mathrm{x}=\frac{-\mathrm{b} \pm \sqrt{\mathrm{b}^{2}-4 \mathrm{ac}}}{2 \mathrm{a}}$
$x=\frac{-1 \pm \sqrt{1-4(-1)}}{2}=\frac{-1 \pm \sqrt{5}}{2}$
$r^{2}=\frac{\sqrt{5}-1}{1}$
Hence, option B is correct.
8.

$\because \quad \triangle \mathrm{ABC}-\triangle \mathrm{DEF}$
$\therefore \frac{\mathrm{AB}}{\mathrm{DE}}=\frac{\mathrm{BC}}{\mathrm{EF}} \quad \Rightarrow \quad \frac{1}{2}=\frac{8}{\mathrm{EF}}$
$E F=16 \mathrm{~cm}$.
Hence, option A is correct.
9.

Area of $\triangle A B D=\frac{1}{2} \times B D \times A D$
and Area of $\triangle \mathrm{ABE}=\frac{1}{2} \times \mathrm{AE} \times \mathrm{BE}$

From Eqs. (i) and (ii),
$\frac{1}{2} \times B D \times A D=\frac{1}{2} \times A E \times B E \Rightarrow B D \times A D=A E \times B E$
Hence, option C is correct.
10.
$\triangle A B C$ is right angled at B.
Using Pythagoras theorem,
$A C^{2}=A B^{2}+B C^{2}$
$A C=10 \mathrm{~cm}$

and in case of right angled triangle, radius lies on h hypotenuse and is the circumcircle of $\triangle A B C$.
\therefore Radius of circumcircle $=\frac{10}{2}=5 \mathrm{~cm}$
Hence, option D is correct.

$\sim^{\prime}-$ SmartKeeda The Question Bank प्रस्तुत करते हैं

 TestZone

 TestZone भारत की सबसे किफायती टेस्ट सीरीज़

12 Month Plan

2017-18 All Test Series

@ Just

₹ 399/300 + फुल लेन्थ टेस्ट

『 श्रेष्ठ विश्लेषण
『 उत्कृष्ट विषय सामग्री
\square बेजोड़ व्याख्या

