

## Triangle Questions for SSC Exams (CGL Tier 1, CGL Tier 2 \& SSC 10+2)

## Triangle Quiz 2

Directions: Study the following questions carefully and choose the right answer:

1. The in-radius of an equilateral triangle is of length 3 cm . Then the length of each of its medians is
A. 12 cm
B. $\frac{9}{2} \mathrm{~cm}$
C. 4 cm
D. 9 cm
2. If the orthocentre and the centroid of a triangle are the same, then the triangle is :
A. Scalene
B. Right angled
C. Equilateral
D. Obtuse angled
3. If in a triangle, the circumcentre, incentre, centroid and orthocentre coincide, then the triangle is
A. Acute angled
B. Isosceles
C. Right angled
D. Equilateral
4. In a triangle, if three altitudes are equal, then the triangle is
A. Obtuse
B. Equilateral
C. Right
D. Isosceles
5. If $A B C$ is an equilateral triangle and $D$ is a point on $B C$ such that $A D \perp B C$, then
A. $A B: B D=1: 1$
B. $A B: B D=1: 2$
C. $A B: B D=2: 1$
D. $A B: B D=3: 2$
6. The side $Q R$ of an equilateral triangle $P Q R$ is produced to the point $S$ in such a way that $Q R=R S$ and $P$ is joined to $S$. Then the measure of $\angle P S R$ is
A. $30^{\circ}$
B. $115^{\circ}$
C. $60^{\circ}$
D. $45^{\circ}$
7. If the circumradius of an equilateral triangle be 10 cm , then the measure of its in-radius is
A. 5 cm
B. 10 cm
C. 20 cm
D. 15 cm
8. If the incentre of an equilateral triangle lies inside the triangle and its radius is 3 cm , then the side of the equilateral triangle is
A. $9 \sqrt{3} \mathrm{~cm}$
B. $6 \sqrt{3} \mathrm{~cm}$
C. $3 \sqrt{3} \mathrm{~cm}$
D. 6 cm
9. In a triangle, if orthocentre, circumcentre, incentre and centroid coincide, then the triangle must be
A. obtuse angled
B. isosceles
C. equilateral
D. right-angled
10. If $A B C$ is an equilateral triangle and $P, Q, R$ respectively denote the middle points of $A B, B C, C A$ then.
A. PQR must be an equilateral triangle
B. $P Q+Q R+P R=A B$
C. $P Q+Q R+P R=2 A B$
D. PQR must be a right angled triangle

## Correct Answers:

| $\mathbf{1}$ | $\mathbf{2}$ | $\mathbf{3}$ | $\mathbf{4}$ | $\mathbf{5}$ | $\mathbf{6}$ | $\mathbf{7}$ | $\mathbf{8}$ | $\mathbf{9}$ | $\mathbf{1 0}$ |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| D | C | D | B | C | A | A | B | C | A |

## Explanations:

1. 

In equilateral triangle centroid, incentre, orthocentre coincide at the same point.
$\therefore \frac{\text { Height }}{3}=$ in-radius
$\therefore$ Height $=3 \times$ in-radius $=3 \times 3=9 \mathrm{~cm}$.
Hence, option D is correct.
2.

In equilateral triangle orthocentre and centroid lie at the same point.
Hence, option C is correct.
3.

In an equilateral triangle, centroid, incentre etc lie at the same point.
Hence, option D is correct.
4.

Triangle will be equilateral.
Hence, option B is correct.
5.


Let $A B=B C=C A=2 x$ units

We know that a perpendicular from any vertex of an equilateral triangle bisects the opposite side.
$\therefore B D=C D=x$ units
$\therefore \mathrm{AB}: \mathrm{BD}=2 \mathrm{x}: \mathrm{x}=2: 1$.
Hence, option C is correct.
6.

$\angle P R Q=60^{\circ} \quad[\because \triangle P Q R$ is an equilateral $]$
$\angle P R S=180^{\circ}-60^{\circ}=120^{\circ}$
$\angle \mathrm{PSR}+\angle \mathrm{RPS}=180^{\circ}-120^{\circ}=60^{\circ}$
As $Q R=R S$
$\therefore P R=\mathrm{RS} \quad[\because \triangle \mathrm{PQR}$ is an equilateral $]$
$\therefore \angle \mathrm{PSR}=\angle \mathrm{RPS}$
From Eq (i),
$2 \angle P S R=60^{\circ}$
$\therefore \angle P S R=30^{\circ}$
Hence, option A is correct.
7.


Let $A B=x \mathrm{~cm}$
$\therefore \mathrm{BD}=\frac{\mathrm{x}}{2} \mathrm{~cm}$

By pythagoras theorem in $\triangle A B D$,
$\mathrm{AD}=\sqrt{A B^{2}-B D^{2}}$
$=x^{2}-\frac{x^{2}}{4}=\frac{\sqrt{3}}{2} x \mathrm{~cm}$
We know that,
In-radius $=\frac{1}{3} \times$ height
$\therefore \mathrm{OD}=\frac{1}{3} \times \frac{3}{2} \mathrm{x}=\frac{\mathrm{x}}{2 \sqrt{3}} \mathrm{~cm}$
By pythagoras theorem in $\triangle B O D$,
$O B=\sqrt{B D^{2}+O D^{2}}$
$=\sqrt{\frac{\mathrm{x}^{2}}{4}+\frac{\mathrm{x}^{2}}{12}}=\sqrt{\frac{4 \mathrm{x}^{2}}{12}}=\frac{\mathrm{x}}{\sqrt{3}}$
Given,
Circumradius, $O B=10 \mathrm{~cm}$
$\therefore \frac{\mathrm{x}}{\sqrt{3}}=10 \Rightarrow \mathrm{x}=10 \sqrt{3} \mathrm{~cm}$
Hence,
In-radius, $O D=\frac{x}{2 \sqrt{3}}=\frac{10 \sqrt{3}}{2 \sqrt{3}}=5 \mathrm{~cm}$
Hence, option A is correct.
8.

In-radius $=\frac{\text { Side }}{2 \sqrt{3}}$
$\Rightarrow 3=\frac{\text { Side }}{2 \sqrt{3}}$
$\Rightarrow$ Side $=3 \times 2 \sqrt{3}=6 \sqrt{3} \mathrm{~cm}$
Hence, option B is correct.
9.

In an equilateral triangle, orthocentre, circum-cente, incentre and centroid coincide.

Hence, option C is correct.
10.

The line segments joining the mid points of the sides of a triangle form four triangles, each of which is similar to the original triangle.

Hence, option A is correct.

# $\sim^{\prime}-$ SmartKeeda The Question Bank प्रस्तुत करते हैं <br> <br> TestZone <br> <br> TestZone भारत की सबसे किफायती टेस्ट सीरीज़ <br>  

## 12 Month Plan

2017-18 All Test Series

@ Just

## ₹ 399/300 + फुल लेन्थ टेस्ट

『 श्रेष्ठ विश्लेषण<br>『 उत्कृष्ट विषय सामग्री<br>$\square$ बेजोड़ व्याख्या

