

Triangle Questions for SSC Exams (CGL Tier 1, CGL Tier 2 & SSC 10+2)

Triangle Quiz 2

A. 12 cm

B. $\frac{9}{2}$ cm

Directions: Study the following questions carefully and choose the right answer:

C. 4 cm

1. The in-radius of an equilateral triangle is of length 3 cm. Then the length of each of its medians is

2. If the orthocentre and the centroid of a triangle are the same, then the triangle is :

D. 9 cm

A. Scalene B. Right angled C. Equilateral D. Obtuse angled

3. If in a triangle, the circumcentre, incentre, centroid and orthocentre coincide, then the triangle is

A. Acute angled B. Isosceles C. Right angled D. Equilateral

4. In a triangle, if three altitudes are equal, then the triangle is

A. Obtuse B. Equilateral C. Right D. Isosceles

5. If ABC is an equilateral triangle and D is a point on BC such that AD \perp BC, then

A. AB : BD = 1 : 1 B. AB : BD = 1 : 2 C. AB : BD = 2 : 1 D. AB : BD = 3 : 2

Correct Answers:

1	2	3	4	5	6	7	8	9	10
D	С	D	В	С	А	А	В	С	А

Explanations:

1.

In equilateral triangle centroid, incentre, orthocentre coincide at the same point.

```
\therefore \frac{\text{Height}}{3} = \text{in-radius}
```

: Height = $3 \times \text{in-radius} = 3 \times 3 = 9 \text{ cm}$.

Hence, option D is correct.

2.

In equilateral triangle orthocentre and centroid lie at the same point.

Hence<mark>, option C is</mark> correct.

3.

In an equilateral triangle, centroid, incentre etc lie at the same point.

Hence, option D is correct.

4.

Triangle will be equilateral.

Hence, option B is correct.

5.

Let AB = BC = CA = 2x units

We know that a perpendicular from any vertex of an equilateral triangle bisects the opposite side.

 \therefore BD = CD = x units

 \therefore AB : BD = 2x : x = 2 : 1.

```
Hence, option C is correct.
```

6.

Hence, option A is correct.

7.

$$\therefore$$
 BD = $\frac{x}{2}$ cm

By pythagoras theorem in $\triangle ABD$,

AD =
$$\sqrt{AB^2 - BD^2}$$

= $x^2 - \frac{x^2}{4} = \frac{\sqrt{3}}{2} x \text{ cm}$
We know that,
In-radius = $\frac{1}{3} \times \text{height}$
 $\therefore \text{ OD} = \frac{1}{3} \times \frac{3}{2} x = \frac{x}{2\sqrt{3}} \text{ cm}$
By pythagoras theorem in ΔBOD ,
OB = $\sqrt{\text{BD}^2 + \text{OD}^2}$
= $\sqrt{\frac{x^2}{4} + \frac{x^2}{12}} = \sqrt{\frac{4x^2}{12}} = \frac{x}{\sqrt{3}}$
Given,
Circumradius, OB = 10 cm
 $\therefore \frac{x}{\sqrt{3}} = 10 \implies x = 10\sqrt{3} \text{ cm}$
Hence,
In-radius, OD = $\frac{x}{2\sqrt{3}} = \frac{10\sqrt{3}}{2\sqrt{3}} = 5 \text{ cm}$

Hence, option A is correct.

8.

In-radius = $\frac{\text{Side}}{2\sqrt{3}}$

$$\Rightarrow 3 = \frac{\text{Side}}{2\sqrt{3}}$$

 \Rightarrow Side = 3 × 2 $\sqrt{3}$ = 6 $\sqrt{3}$ cm

Hence, option B is correct.

9.

In an equilateral triangle, orthocentre, circum-cente, incentre and centroid coincide.

Hence, option C is correct.

10.

The line segments joining the mid points of the sides of a triangle form four triangles, each of which is similar to the original triangle.

Hence, option A is correct.

SmartKeeda The Question Bank

