-1 SmartKeeda

 Presents

 Presents}

TestZone

India's least priced Test Series platform

12 Month Plan
 2017-18 All Test Series

@ Just

₹ 399/-

300+ Full Length Tests

\checkmark Brilliant Test Analysis
\boxtimes Excellent Content
\checkmark Unmatched Explanations

Triangle Questions for SSC Exam.

Triangle Quiz 6

Directions: Kindly study the following Questions carefully and choose the right answer:

1. In a $\triangle A B C$, if D and E are the points on the sides $A B$ and $A C$ respectively such that $D E \|$ $B C$ and if $A D=x, D B=x-2, A E=x+2$ and $E C=x-1$. then find the value of x.
A. 5
B. 4
C. 3
D. 2
2. In a equilateral triangle $A B C$, if $A D \perp B C$, then :
A. $2 A B^{2}=3 A D^{2}$
B. $4 A B^{2}=3 A D^{2}$
C. $3 A B^{2}=4 A D^{2}$
D. $3 A B^{2}=2 A D^{2}$
3. Longest side of a triangle is 20 cm and another side is 10 cm . If area of the triangle is $\mathbf{8 0}$ cm 2 , then what is the length (in cm) of its third side?
A. $\sqrt{260}$
B. $\sqrt{250}$
C. $\sqrt{256}$
D. $\sqrt{240}$
4. In a $\triangle A B C$, the sides $A B$ and $A C$ have been produced to D and E. Bisectors of $\angle C B D$ and \angle $B C E$ meet at 0 . If $\angle A=64^{\circ}$, then $\angle B O C$ is :
A. 52°
B. 58°
C. 26°
D. 112°
5. In $\triangle A B C, A B=A C, \angle B=70^{\circ}, \angle B A D=80^{\circ}, \angle A D E=$?

A. 150°
B. 135°
C. 140°
D. 120°
6. Find the sum of the medians of isosceles triangle, whose sides are 10,10 and 12.
A. $8+2 \sqrt{97} \mathrm{~cm}$
B. $10+2 \sqrt{97} \mathrm{~cm}$
C. $10+2 \sqrt{67} \mathrm{~cm}$
D. None of these
7. In the figure shown below $A D, B E$ and $C F$ are all medians of triangle $A B C$, and $G H$ is parallel to $B C$. If $B H=10 \mathrm{~cm}$, what is the length (in cm) of $A B$?

A. 10
B. 20
C. 25
D. 30
8. If the geometric mean of the lengths of three sides of a triangle is 3 and the area of the circumcircle is 9π, what is the area of the triangle (in sq. units)?
A. 9
B. $\frac{9}{4}$
C. $\frac{5}{4}$
D. 36
9. I is the incentre of triangle PQR. If $\angle P R Q=80^{\circ}, \angle Q I R=110^{\circ}$ and $\mathrm{QI}=21 \mathrm{~cm}$, then what will be the area of the incircle?
A. $376.5 \mathrm{~cm}^{2}$
B. $346.5 \mathrm{~cm}^{2}$
C. $364 \mathrm{~cm}^{2}$
D. $396 \mathrm{~cm}^{2}$
10. In $\triangle A B C$, a line is drawn from A to intersect the opposite side $B C$ at D. What is $m \angle B A D$ such that $A C=C D$ and $m \angle C A B=m \angle A B C+60^{\circ}$?
A. 15°
B. 30°
C. 20°
D. 25°

Correct Answers:

$\mathbf{1}$	$\mathbf{2}$	$\mathbf{3}$	$\mathbf{4}$	$\mathbf{5}$	$\mathbf{6}$	$\mathbf{7}$	$\mathbf{8}$	$\mathbf{9}$	$\mathbf{1 0}$
B	C	A	B	A	A	D	B	B	B

Explanations:

1. Since, $D E \| B C$

$\therefore \frac{A D}{D B}=\frac{A E}{E C}$
$\Rightarrow \frac{x}{x-2}=\frac{x+2}{x-1}$
$\Rightarrow x(x-1)=(x+2)(x-2)$
$\Rightarrow x^{2}-\mathrm{x}=\mathrm{x}^{2}-4$
$\Rightarrow x=4$
Hence, option B is correct.
2.

$A B^{2}=B D^{2}+A D^{2} \Rightarrow A B^{2}=\left(\frac{1}{2} A B\right)^{2}+A D^{2}$
$\therefore 4 A B^{2}=A B^{2}+4 A D^{2} \Rightarrow 3 A B^{2}=4 A D^{2}$
Hence, option C is correct.
3.

Let PS be altitude of $\triangle P Q R$.
Area of $\triangle P Q R=80=\frac{1}{2} \times Q R \times P S$
$\Rightarrow 80=\frac{1}{2} \times 20 \times P S \Rightarrow P S=8 \mathrm{~cm}$
As we know, $\mathrm{PQ}=10 \mathrm{~cm}$ and $\mathrm{PS}=8 \mathrm{~cm}$
Now, by the Pythagorean theorem, we get
\therefore In $\triangle P S Q, Q S=6 \mathrm{~cm}$
$\therefore S R=Q R-P S=(20-6)=14 \mathrm{~cm}$
In $\triangle P S R$,
$P R^{2}=P S^{2}+S R^{2}=8^{2}+14^{2}=260$.
$\therefore P R=260 \mathrm{~cm}$
Hence, option A is correct.
4.

$\angle C B D=\angle A+\angle C, \angle B C E=\angle B+\angle A$.
[\because An exterior angle of a triangle is equal to the sum of the opposite interior angles.]
$\therefore \quad \angle C B D+\angle B C E=(\angle A+\angle B+\angle C)+\angle A=180^{\circ}+A$
$\frac{1}{2} \angle C B D+\frac{1}{2} \angle B C E=90^{\circ}+\frac{A}{2}$
But, $\frac{1}{2} \angle \mathrm{CBD}+\frac{1}{2} \angle \mathrm{BCE}+\angle \mathrm{BOC}=180^{\circ}$
$\therefore \angle B O C=180^{\circ}-\left(90^{\circ}+\frac{A}{2}\right)$
$=\left(90^{\circ}-\frac{A}{2}\right)=\left(90^{\circ}-\frac{64}{2}\right)=58^{\circ}$.
Hence, option B is correct.
5.

$\angle B=\angle A C B=70^{\circ}$
$\angle B A C=180^{\circ}-\left(70^{\circ}+70^{\circ}\right)=40^{\circ}$
$\angle A D E=\angle C A D+\angle A C D=40^{\circ}+110^{\circ}=150^{\circ}$
Hence, option A is correct.
6. In $\triangle A B C, a=B C=12 \mathrm{~cm}, \mathrm{~b}=\mathrm{AC}=10 \mathrm{~cm}$ and $\mathrm{c}=\mathrm{AB}=10 \mathrm{~cm}$

Let $A D, B E$ and $C F$ are the medians of $\triangle A B C$.
In geometry, Apollonius' theorem is a theorem relating the length of a median of a triangle to the lengths of its side. It states that "the sum of the squares of any two sides of any triangle equals twice the square on half the third side, together with twice the square on the median bisecting the third side".
$\therefore \quad A B^{2}+A C^{2}=2\left(A D^{2}+B D^{2}\right)$
$\therefore(10)^{2}+(10)^{2}=2\left(A D^{2}+6^{2}\right)$
$\therefore \quad 200+2\left(A D^{2}+36\right)$
$\therefore A D=8 \mathrm{~cm}$
Using $A B^{2}+B C^{2}=2\left(B E^{2}+A E^{2}\right)$, we get
$B E=97 \mathrm{~cm}$
Similarly, using $A C^{2}+B C^{2}=2\left(C F^{2}+A F^{2}\right)$, we get
$C F=97 \mathrm{~cm}$
Thus, $\mathrm{AD}+\mathrm{BE}+\mathrm{CF}=(8+297) \mathrm{cm}$
Hence, option A is correct.
7. We use the property that medians of a triangle divide each other in the ratio $2: 1$.
$\therefore \mathrm{AO}: \mathrm{OD}=\mathrm{BO}: \mathrm{OE}=\mathrm{CO}: \mathrm{OF}=2: 1$
Now, consider $\triangle A O H$ and $\triangle A D B$. We can see that they are similar by the AAA property.
\therefore Their sides are in the same ratio.
Specifically, $A O: A D=2: 3=A H: A B$
$\therefore \quad A H=\frac{2}{3} \times A B=\frac{2}{3} \times(A H+B H)=\frac{2}{3} \times(A H+10)$
$\therefore A H=20 \mathrm{~cm}$
$\therefore A B=A H+B H=30 \mathrm{~cm}$
Hence, option D is correct.
8. Let the sides of the triangle be a, b, c and circumradius be R.

Geometric mean of a, b and $\mathrm{c}=(\mathrm{abc})^{1 / 3}=3$
$\therefore \quad a b c=3^{3}=27$
Area of circumcircle $=\pi R^{2}=9 \pi$
\therefore Circumradius $=\mathrm{R}=3$
Now, area of triangle $=\frac{a b c}{4 R}=\frac{9}{4}$
Hence, option B is correct.
9.

Given that, I is the incentre of the triangle $P Q R$ and $\angle P R Q=80^{\circ}$
Now, $\angle \mathrm{QIR}=110^{\circ}$ and $\mathrm{QI}=21 \mathrm{~cm}$
Let ID \perp QR
$\angle Q P R=2(110-90)=40^{\circ}$
(By the property of incircle)
$\therefore \angle P Q R=180-\angle Q P R-\angle P R Q$
$=180-40-80=60^{\circ}$
$\angle I Q D=\frac{\angle P Q R}{2}=\frac{60}{2}=30^{\circ}$
Now, $I D=I Q=\sin 30^{\circ}=21 \times \frac{1}{2}=\frac{21}{2} \mathrm{~cm}$
$\therefore \quad$ Area of incircle $=\frac{22}{7} \times \frac{21}{2} \times \frac{21}{2}=346.5 \mathrm{~cm}^{2}$
Hence, option B is correct.
10.

$\because \quad A C=C D, m \angle A D C=m \angle A C D$
$m \angle B A D=m \angle C A B-m \angle C A D$
$=m \angle C A B-m \angle A D C$
Using exterior angle theorem, $m \angle A D C=m \angle B A D+m \angle A B D$
$\therefore m \angle B A D=m \angle C A B-(m \angle B A D+m \angle A B D)$
$m \angle A B D=m \angle A B C$
$\therefore \quad 2(m \angle B A D)=m \angle C A B-m \angle A B C=60^{\circ}$
$\therefore \mathrm{m} \angle \mathrm{BAD}=30^{\circ}$
Hence, option B is correct.

$\sim^{\prime}-$ SmartKeeda The Question Bank प्रस्तुत करते हैं

 TestZone

 TestZone भारत की सबसे किफायती टेस्ट सीरीज़
 ■ (3)

12 Month Plan

2017-18 All Test Series

@ Just

₹ 399/-
 300 + फुल लेन्थ टेस्ट

『 श्रेष्ठ विश्लेषण
『 उत्कृष्ट विषय सामग्री
\checkmark बेजोड़ व्याख्या

