

Triangle Questions for SSC Exam.

Triangle Quiz 6

Directions: Kindly study the following Questions carefully and choose the right answer:

1. In a \triangle ABC, if D and E are the points on the sides AB and AC respectively such that DE || BC and if AD = x, DB = x - 2, AE = x + 2 and EC = x - 1. then find the value of x.

7. In the figure shown below AD, BE and CF are all medians of triangle ABC, and GH is parallel to BC. If BH = 10 cm, what is the length (in cm) of AB?

A. 10	B. 20	C. 25	D. 30
8. If the geometric mean of the lengths of three sides of a triangle is 3 and the area of the circumcircle is 9π , what is the area of the triangle (in sq. units)?			
A. 9	B. 9	C. $\frac{5}{4}$	D. 36
9. I is the incentre of triangle PQR. If \angle PRQ = 80°, \angle QIR = 110° and QI = 21 cm, then what will be the area of the incircle?			
A. 376.5 cm ²	$P_{246} = cm^2$		2
	B. 540.5 CIII	C. 364 cm ⁻	D. 396 cm²
10. In \triangle ABC, a line is d such that AC = CD and	Irawn from A to intersect m ∠CAB = m ∠ABC + 60°?	t the opposite side BC at	D. 396 cm ² D. What is m ∠BAD
10. In ΔABC, a line is d such that AC = CD and A. 15°	Irawn from A to intersect m ∠CAB = m ∠ABC + 60°? B. 30°	C. 364 cm ⁻ t the opposite side BC at C. 20°	D. 396 cm ² D. What is m ∠BAD D. 25°
10. In ΔABC, a line is d such that AC = CD and A. 15°	Irawn from A to intersect m ∠CAB = m ∠ABC + 60°? B. 30°	C. 364 cm ⁻ t the opposite side BC at C. 20°	D. 396 cm ² D. What is m ∠BAD D. 25°
10. In ΔABC, a line is d such that AC = CD and A. 15°	Irawn from A to intersect m ∠CAB = m ∠ABC + 60°? B. 30°	C. 364 cm ⁻	D. 396 cm ² D. What is m ∠BAD D. 25°
10. In ΔABC, a line is d such that AC = CD and A. 15°	Irawn from A to intersect m ∠CAB = m ∠ABC + 60°? B. 30°	C. 364 cm ⁻ t the opposite side BC at C. 20°	D. 396 cm ² D. What is m ∠BAD D. 25°
10. In ΔABC, a line is d such that AC = CD and A. 15°	Irawn from A to intersect m ∠CAB = m ∠ABC + 60°? B. 30°	C. 364 cm ⁻ t the opposite side BC at C. 20°	D. 396 cm ² D. What is m ∠BAD D. 25°

$$=(90^{\circ}-\frac{A}{2})=(90^{\circ}-\frac{64}{2})=58^{\circ}.$$

Hence, option B is correct.

7. We use the property that medians of a triangle divide each other in the ratio 2 : 1. \therefore AO : OD = BO : OE = CO : OF = 2 : 1 Now, consider \triangle AOH and \triangle ADB. We can see that they are similar by the AAA property. \therefore Their sides are in the same ratio. Specifically, AO : AD = 2 : 3 = AH : AB \therefore AH = $\frac{2}{3} \times AB = \frac{2}{3} \times (AH + BH) = \frac{2}{3} \times (AH + 10)$ \therefore AH = 20 cm \therefore AB = AH + BH = 30 cm Hence, option D is correct.

8. Let the sides of the triangle be a, b, c and circumradius be R. Geometric mean of a, b and c = $(abc)^{1/3} = 3$ $\therefore abc = 3^3 = 27$ Area of circumcircle = $\pi R^2 = 9\pi$ \therefore Circumradius = R = 3 Now, area of triangle = $\frac{abc}{4R} = \frac{9}{4}$

Hence, option B is correct.

